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Unstructured text provides decision-makers with a rich data source in many domains, ranging from product

reviews in retail to nursing notes in healthcare. To leverage this information, words are typically translated

into word embeddings—vectors that encode the semantic relationships between words—through unsupervised

learning algorithms such as matrix factorization. However, learning word embeddings from new domains with

limited training data can be challenging, because the meaning/usage may be different in the new domain,

e.g., the word “positive” typically has positive sentiment, but often has negative sentiment in medical notes

since it may imply that a patient tested positive for a disease. In practice, we expect that only a small

number of domain-specific words may have new meanings. We propose an intuitive two-stage estimator that

exploits this structure via a group-sparse penalty to efficiently transfer learn domain-specific word embed-

dings by combining large-scale text corpora (such as Wikipedia) with limited domain-specific text data. We

bound the generalization error of our transfer learning estimator, proving that it can achieve high accuracy

with substantially less domain-specific data when only a small number of embeddings are altered between

domains. Furthermore, we prove that all local minima identified by our nonconvex objective function are

statistically indistinguishable from the global minimum under standard regularization conditions, implying

that our estimator can be computed efficiently. Our results provide the first bounds on group-sparse matrix

factorization, which may be of independent interest. We empirically evaluate our approach compared to

state-of-the-art fine-tuning heuristics from natural language processing.

Key words : word embeddings, transfer learning, group sparsity, matrix factorization, natural language

processing (NLP), text analytics

1. Introduction

Natural language processing is an increasingly important part of the analytics toolkit for leveraging

unstructured text data in a variety of domains. For instance, service providers mine online consumer

reviews to inform operational decisions on platforms (Mankad et al. 2016) or to infer market

structure and the competitive landscape for products (Netzer et al. 2012); Twitter posts are used
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to forecast TV show viewership (Liu et al. 2016); analyst reports of S&P 500 firms are used to

measure innovation (Bellstam et al. 2020); medical notes are used to predict operational metrics

such as readmissions rates (Hsu et al. 2020); online ads or reviews are used to flag service providers

that are likely engaging in illicit activities (Ramchandani et al. 2021, Li et al. 2021).

To leverage unstructured text in decision-making, we must preprocess the text to capture the

semantic content of words in a way that can be passed as an input to a predictive machine learning

algorithm. In the past, this involved domain experts performing costly and imperfect feature engi-

neering. A much more powerful, data-driven approach is to use unsupervised learning algorithms

to learn word embeddings, which represent words as vectors (Mikolov et al. 2013, Pennington et al.

2014); we focus on widely-used word embedding models that are based on low-rank matrix fac-

torization (Pennington et al. 2014, Levy and Goldberg 2014). These word embeddings translate

semantic similarities between words and the context within which they appear into statistical rela-

tionships. Typically, they are trained to encode how frequently pairs of words co-occur in text;

these co-occurrence counts implicitly contain semantic properties of words since words with sim-

ilar meanings tend to occur in similar contexts. Given the large number of words in the English

language, to be effective in practice, embeddings must be trained on large-scale and comprehensive

text data, e.g., popular embeddings such as Word2Vec (Mikolov et al. 2013) and GloVe (Pennington

et al. 2014) are trained on Wikipedia articles.

However, it is well-known that pre-trained word embeddings can miss out on important domain-

specific meaning/usage, hurting downstream interpretation and effectiveness. Take the healthcare

domain as an example. The word “positive” is typically associated with positive sentiment on

Wikipedia; yet, in the context of medical notes, it typically indicates the presence of a medical con-

dition, corresponding to negative sentiment. Thus, using a generic word embedding for “positive”

may diminish performance in medical applications. Similarly, words like “adherence” (referring

to medication adherence) have a specific meaning in a healthcare context (relative to its context

on general Wikipedia entries) and are strongly predictive of patient outcomes; failing to account

for its healthcare-specific meaning may result in a loss in the downstream accuracy of healthcare-

specific prediction tasks (Blitzer et al. 2007). Consequently, there has been a large body of work

training specialized embeddings in a number of diverse contexts, ranging from radiology reports

(Ong et al. 2020), stock market prediction (Li and Shah 2017), cybersecurity vulnerability reports

(Roy et al. 2017), and patent classification (Risch and Krestel 2019). This approach only works

when the decision-maker has access to a sufficiently large domain-specific text corpus, allowing her

to train high-quality embeddings. In practice, decision-makers often have limited domain-specific

text data, yielding poor results when training new word embeddings, which hurts the quality of
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downstream modeling and decisions that leverage these embeddings. In other words, word embed-

dings trained on domain-specific data alone are unbiased but can have high variance due to limited

sample size; in contrast, pre-trained word embeddings have low variance but can be significantly

biased depending on the extent of domain mismatch.

Then, a natural question is whether we can combine large-scale publicly available text corpora

(which we call the proxy data hereafter) with limited domain-specific text data (which we call the

gold data hereafter) to train precise but domain-specific word embeddings. In particular, we aim to

use transfer learning to achieve a better bias-variance tradeoff than using gold or proxy data alone.

Our key insight to enable transfer learning is that the meaning/usage of most words do not change

when changing domains; rather, we expect that only a small number of domain-specific words will

have new meaning/usage. To illustrate, Figure 1 shows text data (paragraphs) from a variety of

domain-specific Wikipedia articles, including finance, math, computing, and politics. Words that

have a domain-specific meaning are enclosed in a red box,1 while the remaining words share the

same meaning/usage as in the standard English language. We observe that only a small number

of unique words have domain-specific meaning/usage.

More formally, consider a corpus of d words. Let Up ∈Rd×r denote the true (unobserved) proxy

word embedding matrix, of which the ith row U (i,·)
p is the true r-dimensional word embedding

of word i ∈ [d] = {1, · · · , d} based on the proxy data; analogously, let Ug ∈ Rd×r denote the true

(unobserved) gold word embedding matrix. We expect that the meaning/usage for most words are

preserved in both domains—i.e., the word embeddings U (i,·)
g 6=U (i,·)

p for only a small number s� d

values of i∈ [d]. This induces a group-sparse structure for the difference matrix Ug −Up, i.e., only

a small number s of the rows (groups) are nonzero. Figure 2 illustrates this notion of “sparsity”

on a toy example with d = 10 words, embeddings with dimension r = 5, and s = 3 words with

shifted meaning/usage. Indeed, we find support for this group-sparse structure in our previous

examples from Wikipedia—e.g., in the finance domain (Fig 1(a)), we observe only s = 4 unique

finance domain-specific words (put, options, stock, strike) out of a total of d= 51 distinct words,

yielding a sparsity ratio s/d. 0.08. Similarly for the other domains in Fig 1, the sparsity ratios s/d

are approximately 0.11, 0.07 and 0.05 for the math, computing, and politics examples respectively.

(Details and experiments on the Wikipedia data can be found in §5.2.)

Based on this intuition, we formulate an objective that incorporates a group-sparse penalty

(Friedman et al. 2010, Simon et al. 2013) on Ug−Up, where each row is treated as a group. In par-

ticular, we estimate domain-specific embeddings from gold data, incorporating `2,1 regularization

to impose group sparsity relative to the (estimated) word embeddings trained on the large proxy

1 Briefly, we categorize a word as domain-specific if any of the word’s definitions on Wiktionary is labeled with key
words from that specific domain; see §5.2 for details.
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(a) Finance Domain - “Put Option”

(b) Math Domain - “Prime Number”

(c) Computing Domain - “Server”

(d) Politics Domain - “Conservatism”

Figure 1 Paragraphs extracted from four Wikipedia articles of four domains respectively. We enclose

domain-specific words in red boxes, distinguishing the first occurrence (solid line) from subsequent occurrences

(dashed line). See §5.2 for our definition of domain words and other experiments on Wikipedia data.

data. Our approach balances the need to update the embeddings of important domain-specific

words based on the gold data (i.e., reduce bias), while matching most words to the embeddings

estimated from the large proxy text corpus (i.e., reduce variance).

Our main result establishes that the word embedding estimator trained by group-sparse trans-

fer learning achieves a sample complexity bound that, to leading order, scales quadratically in s

(the number of words with altered meaning/usage), as opposed to the conventional bound that

scales quadratically in d (the total number of words). In other words, transfer learning allows us to
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(a) Up (b) Ug (c) Ug −Up

Figure 2 Toy example of (a) proxy and (b) gold word embedding matrices for d = 10 and r = 5. Only s = 3

words change meaning/usage, inducing a group-sparse structure in the (c) difference matrix. The colors represent

the magnitude of coefficients, ranging from zero (yellow) to large (red).

accurately identify domain-specific word embeddings with substantially less domain-specific data

than classical low-rank matrix factorization methods. We build on prior work establishing error

bounds for the group LASSO (Lounici et al. 2011) and low-rank matrix problems (Ge et al. 2017,

Negahban and Wainwright 2011). We face two additional technical challenges. First, the literature

on nonconvex low-rank matrix problems typically studies the Hessian to ensure that local minima

are well-behaved; however, the Hessian may not be well-defined under our nonsmooth group-sparse

penalty (since the gradient is not continuous). Second, unlike the traditional high-dimensional

literature, transfer learning introduces a quartic form (in terms of Ug −Up) in our objective func-

tion. We address both challenges through a new analysis that relies on an assumption we term

“quadratic compatibility condition.” We show that quadratic compatibility is implied by a natural

restricted strong convexity (RSC) assumption, which we prove holds with high probability in a

general low-rank matrix factorization problem for the illustrative cases of gaussian data and word

co-occurrence count data. Furthermore, under a slightly weaker condition that can characterize all

local minima (Loh and Wainwright 2015), all local minima identified by our algorithm are statis-

tically indistinguishable from the global minimum, implying that our estimator can be computed

efficiently.

While our technical results hold for embeddings trained using matrix factorization, our algorithm

straightforwardly applies to nonlinear objectives such as GloVe. Simulations on synthetic data

and domain-specific Wikipedia articles show that our estimator significantly outperforms common

heuristics given rich proxy data and limited domain-specific data. Importantly, we show that this

is an interpretable strategy to identifying key words with distinct meanings in specific domains

such as finance, math, and computing.
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1.1. Related Literature

Transfer learning involves transferring knowledge from a data-rich source domain to a data-poor

target domain (also called “domain adaptation”). In order for such approaches to be effective,

the two domains must be related in some way. For instance, the two domains may have the same

label distribution p(y | x) but different covariate distributions p(x), a setting typically termed as

“covariate shift” (see, e.g., Ben-David et al. 2007, 2010, Ganin and Lempitsky 2015). Our problem

falls into the more challenging category known as “label shift,” where p(y | x) itself differs across the

two domains (since the underlying embeddings change for some words). A number of approaches

have been proposed for addressing label shift in supervised learning problems (see, e.g., Lipton et al.

2018, Zhang et al. 2013).2 Our approach is most closely related to recent work applying LASSO for

transfer learning (Bastani 2020), where the label shift is driven by a sparse shift in the underlying

parameter vectors. Their key theoretical result is that relative sparsity between the gold and proxy

parameter vectors is sufficient to enable efficient transfer learning in high dimensions. Existing

theoretical results are critically limited to supervised learning. To the best of our knowledge, we

propose the first framework for theoretically understanding the value of transfer learning in natural

language processing (generally considered an unsupervised learning problem), which introduces

new technical challenges.

However, a number of practical heuristics have been proposed for domain adaptation for natural

language processing. A surprisingly effective transfer learning strategy is to simply fine-tune pre-

trained word embeddings on data from the target domain. Intuitively, stochastic gradient descent

has regularization properties similar to `2 regularization (Ali et al. 2020), so this strategy can be

interpreted as regularizing the target word embeddings towards the pre-trained word embeddings

(Dingwall and Potts 2018, Yang et al. 2017). We demonstrate empirically that our approach of

using `1 regularization outperforms these heuristics in the low-data regime.

We build on approaches that construct word embeddings based on low-rank matrix factorization

(Pennington et al. 2014, Levy and Goldberg 2014). Levy and Goldberg (2014) show that one

popular approach—skip-gram with negative sampling—implicitly factorizes a word-context matrix

shifted by a global constant. Another popular approach is GloVe (Pennington et al. 2014), which

uses a nonlinear version of our loss function; our estimator extends straightforwardly to this setting.

Accordingly, we build on the theoretical literature on low-rank matrix factorization—specifically

the Burer-Monteiro approach (Burer and Monteiro 2003), which replaces Θ with a low-rank rep-

resentation UUT , with U ∈ Rd×r, and minimizes the objective in U . Ge et al. (2017) shows that

the local minima of this nonconvex problem are also global minima under the restricted isometry

2 Problems with labeled source data and unlabeled target data are sometimes referred to as “unsupervised”; we
categorize them as “supervised” to distinguish from problems where both source and target data are unlabeled.
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property; Li et al. (2019) extend this by considering a more general objective function that satisfies

a restricted well-conditioned assumption. One alternative is nuclear-norm regularization (Recht

et al. 2007, Candes and Plan 2011, Negahban and Wainwright 2011), but this algorithm lends less

naturally to our transfer learning objective and is often computationally inefficient.

This paper extends our earlier short conference paper (Anonymous 2021) as follows. First, we

show that the quadratic compatibility condition (a critical component of our proofs) is implied

by a natural restricted strong convexity condition, which we prove holds with high probability

in a general low-rank matrix factorization problem for the illustrative cases of gaussian data and

word co-occurrence count data (§2.4). Second, more importantly, we prove that all local minima

identified by our estimator are statistically indistinguishable from the global minimum under a

slightly weaker condition proposed by Loh and Wainwright (2015) that is likely to hold for all

local minima (§3.3). This result significantly strengthens our main result by showing that the

optimization problem used to compute our estimator is tractable in practice. Third, we relate our

error bounds back to the scaling specific to word embedding models (Corollary 1–3). Finally, we

significantly expand the experimental results on both synthetic and real data to illustrate the value

and robustness of our approach.

2. Problem Formulation

We first formalize the problem of learning word embeddings as a low-rank matrix sensing problem

(§2.1), and describe our transfer learning approach (§2.2). We then state our assumptions (§2.3)

and provide intuition for our quadratic compatibility condition (§2.4).

Notation. For any vector v ∈ Rd, let ‖v‖ denote its `2 norm. For a matrix Θ ∈ Rd1×d2 of

rank r, we denote its singular values by σmax(Θ) = σ1(Θ) ≥ σ2(Θ) ≥ · · · ≥ σr(Θ) = σmin(Θ) > 0,

its Frobenius norm by ‖Θ‖F =
√∑r

j=1 σ
2
j (Θ), its operator norm by ‖Θ‖ = σ1(Θ), its vector `∞

norm by |Θ|∞ = maxi,j |Θ(i,j))|, its vector `1 norm by |Θ|1 =
∑

i,j |Θ(i,j))|, and its matrix `2,1 norm

by ‖Θ‖2,1 =
∑d1

j=1 ‖Θj‖. We use superscript (i, j) to represent entry (i, j) of a matrix Θ, (i, ·) the

ith row of the matrix, and (·, j) the jth column. Given Θ,Θ′ ∈ Rd1×d2 , we denote the matrix dot

product by 〈Θ,Θ′〉=
∑d1

i=1

∑d2

j=1 Θ(i,j)Θ′(i,j). Finally, let [k] = {1,2, · · · , k}.

2.1. Matrix Sensing

Our word embedding model is an instance of the more general setting of matrix sensing (Recht

et al. 2007), where one aims to recover an unknown symmetric matrix Θ∗ ∈Rd×d with rank r� d.

In other words, we can write Θ∗ = U∗U∗T where U∗ ∈Rd×r. The typical goal in matrix sensing is

to estimate Θ∗ given observation matrices Ai ∈Rd×d and Xi ∈R, for i∈ [n], where

Xi = 〈Ai,Θ∗〉+ εi, (1)
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and ε1, · · · , εn are independent σ-subgaussian random variables (Definition 1). This model is intro-

duced to generalize low-rank matrix factorization (Recht et al. 2007)—the observation matrices Ai

allow for general observation models of the underlying low-rank model Θ∗, intuitively playing a

similar role as covariates in classical linear regression.

To simplify notation, we define the linear operator A :Rd×d→Rn, where A(Θ)i = 〈Ai,Θ〉. Then,

we can write

X =A(Θ∗) + ε,

where X = [X1, · · · ,Xn]T and ε= [ε1, · · · , εn]T .

Definition 1. A random variable Z is σ-subgaussian if, for any t∈R, E[Z] = 0 and E[exp(tZ)]≤

exp(σ2t2/2).

As we will discuss at the end of this subsection, in natural language processing, Θ∗ corresponds

to the word co-occurrence probability matrix, while U∗ corresponds to the word embeddings. Thus,

in contrast to the matrix sensing literature which aims to estimate Θ∗, our goal is to estimate the

low-rank representation U∗. However, we can only compute U∗ up to an orthogonal change-of-basis

since Θ∗ is preserved under such a transformation—i.e., if we let Ũ∗ = U∗R for an orthogonal

matrix R ∈ Rr×r, then we still obtain Ũ∗Ũ∗T = U∗RRTU∗T = U∗U∗T = Θ∗. Thus, our goal is to

compute Û such that Û ≈U∗R for some orthogonal matrix R.

We build on Burer and Monteiro (2003), which solves the following optimization problem:

min
U∈Rd×r

1

n
‖X −A(UUT )‖2.

Despite its nonconvex loss, this estimator performs well in practice, and has desirable theoretical

properties (i.e., no spurious local minima) under the restricted isometry property (Ge et al. 2017).

We measure the estimation error of Û using the `2,1 norm, which is more compatible with the

group-sparse structure that we will impose shortly. In addition, since we can only identify U∗ up

to orthogonal change-of-basis, we consider the following rotation-invariant error.

Definition 2. Given Û ,U∗ ∈Rd×r, the error of Û is

`(Û ,U∗) = ‖Û −U∗R(Û,U∗)‖2,1,

where R(Û,U∗) = arg minR:RTR=RRT=I ‖Û −U∗R‖F .

Remark 1. An alternative approach to Burer-Monteiro is to estimate Θ∗ directly using nuclear

norm regularization (see, e.g., Candes and Plan 2011, Negahban and Wainwright 2011). However,

this approach is often too computationally costly in large-scale problems (Recht et al. 2007).

Furthermore, estimating U∗ is more natural in our setting since our final goal is to recover U∗

(rather than Θ∗), and our transfer learning strategy penalizes deviations in U∗.
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Word embeddings. Word embedding models typically consider how often pairs of words co-

occur within a fixed-length window. Without loss of generality, we consider neighboring word pairs,

i.e., a window with length 1. Let the length of our text corpus be n+ 1 so that the total number

of neighboring word pairs is n. Recall that we have d unique words, and we define our word co-

occurrence matrix to be Θ∗ ∈ Rd×d, where the (j, k) entry Θ∗(j,k) is the probability that word j

and word k appear together. To estimate each of these d2 probabilities, e.g., Θ∗(j,k) of word pair

(j, k), we randomly draw n word pairs from the text with replacement and record the outcome as

a binary indicator for whether the draw matches the pair (j, k). We draw samples independently

across all d2 possible word pairs.3 This yields d2n samples in total; for each i∈ [d2n], the outcome

is a binary variable named Xi that takes value 1 if the draw i is exactly the pair (j, k) and 0

otherwise. We encode the corresponding word pair (j, k) in a basis matrix Ai ∈Rd×d, whose (j, k)

entry equals 1 and 0 otherwise — i.e., Ai = Ejk where Ejk is the basis matrix with entry (j, k)

being 1 and 0 otherwise. Note that the ith draw corresponds to the word pair (j, k) with probability

Θ∗(j,k) = 〈Ai,Θ∗〉. Therefore, we can think of Xi as a Bernoulli random variable with mean 〈Ai,Θ∗〉,

i.e., Xi ∼ Bernoulli(〈Ai,Θ∗〉), and our observation model has the form

Xi = 〈Ai,Θ∗〉+ εi, (2)

where Ai is a basis matrix, Xi is a Bernoulli random variable, and εi is the noise. The model in (2)

has been used in other applications (without transfer learning), e.g., for recommendation systems

in Farias and Li (2019)—their outcome Xi is a binary indicator that equals 1 if customer j has

purchased product k in the past month and 0 otherwise, and their 〈Ai,Θ∗〉 is the probability of

such transactions. We discuss how our general results scale under this model in §3.2.

2.2. Transfer Learning

We now consider transfer learning from a large text corpus to the desired target domain. Let U∗p ∈

Rd×r denote the unknown word embeddings from the proxy (source) domain, and U∗g ∈Rd×r denote

the unknown word embeddings from the gold (target) domain. Our goal is to use data from both

domains to estimate U∗g (up to rotations). In particular, we are given proxy data Ap : Rd×d→Rnp

and Xp ∈Rnp from the source domain, along with gold data Ag : Rd×d→Rng and Xg ∈Rng from

the target domain, such that

Xp =Ap(Θ∗p) + εp and Xg =Ag(Θ∗g) + εg,

3 In practice, one could simply enumerate all n word pairs to construct each Θ∗(j,k) instead of using sampling, e.g.,
this is typically how the GloVe model (Pennington et al. 2014) is trained. However, for the purpose of establishing
convergence guarantees, using the same n observed word pairs to estimate each Θ∗(j,k) induces non-independence in
our observations. To remedy this, we randomly draw n word pairs with replacement for each pair (j, k) independently.
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where εp ∈Rnp and εg ∈Rng are independent σp- and σg-subgaussian random variables respectively.

We are interested in the setting where (ng/σ
2
g)� (np/σ

2
p). As we will discuss later, this regime

holds when we have limited domain-specific data but a large text corpus from other domains.

Group-Sparse Structure. To enable transfer learning, we must assume some relationship

between the proxy and gold domains. Motivated by our previous discussion, we assume that the

bias term

∆∗U =U∗g −U∗p ,

has a row-sparse structure—i.e., most of its rows are 0. This structure arises when the embeddings

of most words are preserved across domains, but a few words have a different meaning/usage in

the new domains (see illustration in Figure 2c). More precisely, let the index set

J =
{
j ∈ [d]

∣∣∣ ‖∆∗jU ‖ 6= 0
}
,

correspond to the set of rows with nonzero entries. The group sparsity of ∆∗U is s= |J |. Then, a

high-quality estimate of U∗p (from the large text corpus) can help us recover U∗g with less data,

since the sample complexity of estimating ∆∗U (due to its sparse structure) is less than that of U∗g .

Note that the row-sparse structure of ∆∗U is preserved under orthogonal transformations that

are applied to both U∗g and U∗p—i.e., if Ũ∗p =U∗pR and Ũ∗g =U∗gR for an orthogonal matrix R, then

∆̃∗U = Ũ∗g − Ũ∗p = (U∗g −U∗p )R= ∆∗UR has the same group sparsity as ∆∗U .

2.3. Assumptions

We make two assumptions on the proxy and gold linear operators. Our first assumption is a

standard restricted well-conditionedness (RWC) property on Ap from the matrix factorization

literature (Li et al. 2019), which allows us to recover high-quality estimates of the proxy word

embeddings U∗p .

Definition 3. A linear operator A satisfies the r-RWC(α,β) condition if

α‖Z‖2F ≤
1

n
‖A(Z)‖2 ≤ β‖Z‖2F ,

with 3α> 2β and for any Z ∈Rd×d with rank(Z)≤ r.

Assumption 1. The proxy linear operator Ap satisfies 2r-RWC(αp, βp).

The RWC condition ensures sufficient convexity of the loss function near U∗p , and further, guar-

antees statistical consistency for all local minima in a nonconvex matrix factorization problem (Li

et al. 2019). Specifically, α‖Z‖2F ≤ 1
n
‖A(Z)‖2 ensures that the loss function has sufficient convex-

ity to recover the low-rank matrix Θ∗p = U∗pU
∗T
p consistently. This is comparable to the minimum

eigenvalue condition in a linear regression problem. The rest of the definition provides sufficient
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smoothness in terms of U∗p so that the nonconvex matrix factorization problems have no spuri-

ous local minima—i.e., they are all global minima (Bhojanapalli et al. 2016, Park et al. 2017, Ge

et al. 2017). The RWC condition is a generalization of the standard restricted isometry property

(RIP) in the matrix factorization literature (see, e.g., Candes and Tao 2005). However, RIP is very

restrictive as it requires all the eigenvalues of the Hessian matrix to be within a small range of 1.

Our first assumption is mild since we have a large proxy dataset, i.e., np � d2. The degrees

of freedom of a d × d matrix Z of rank r is r(2d − r); thus, in general, we only require n ≥

r(2d−r) observations to achieve the lower bound in Definition 3. For instance, when A is a gaussian

ensemble, RIP holds with high probability when n& dr (Candes and Plan 2011, Recht et al. 2007).

Remark 2. Note that the operator A in our word embedding model consists of basis matrices;

as a result, our model has a relatively lower signal-to-noise ratio (e.g., compared to the case where

A is from a gaussian ensemble), since 1
n
‖A(Θ)‖2 ≈ 1

d2 ‖Θ‖2F . Therefore, when we later present our

bounds for the word embedding model, we will scale the parameters α,β in the RWC assumption by

1
d2 . Such a scaling is standard in the low-rank matrix literature when using basis matrix observations

(see, e.g., Ge et al. 2016).

Our second assumption is a quadratic compatibility condition (QCC) on Ag, which allows us to

recover U∗g despite our nonsmooth and quartic objective function. This condition is adapted from

the standard compatibility condition in the high dimensional statistics literature (Van De Geer

and Bühlmann 2009, Bühlmann and Van De Geer 2011, Lounici et al. 2011, Negahban et al. 2012).

Definition 4 (QCC). A linear operator A satisfies the quadratic compatibility condition

(QCC(U∗, κ)) with matrix U∗ and constant κ if

1

n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2 ≥ κ

s

(∑
j∈J

‖∆j‖

)2

,

for any ∆∈Rd×r that satisfies
∑

j∈Jc ‖∆j‖ ≤ 7
∑

j∈J ‖∆j‖.

Assumption 2. The gold linear operator Ag satisfies QCC(U∗g , κ).

QCC imposes a much weaker convexity requirement than RWC, since RWC is unlikely to hold in

the low-data regime (ng < dr). Intuitively, we cannot guarantee a minimum eigenvalue condition

holds for Ag with very few gold samples, precluding us from obtaining high-quality estimates of

Θ∗g. However, we can instead impose a convexity guarantee on a restricted subspace that contains

U∗g −U∗p . The same intuition can be found in the LASSO literature (Van De Geer and Bühlmann

2009, Bühlmann and Van De Geer 2011, Negahban et al. 2012) for linear regression—in the low-data

regime, we cannot impose the standard minimum eigenvalue condition on the covariance matrix, so

we instead impose a compatibility condition on a restricted subspace that contains the non-sparse
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elements of the true parameter. Note that our QCC assumption takes a different form than the

compatibility condition in group-sparse linear regression (Lounici et al. 2011)—specifically, QCC

includes an additional quadratic term ∆∆T on the left hand side due to the fact that we are

studying a nonconvex matrix factorization problem. We give a detailed discussion of this condition

in the next subsection.

Remark 3. Analogous to Remark 2, when we later present our bounds for the word embedding

model, we will scale the parameter κ in the QCC assumption by 1
d2 . Proposition 3 in the next

section provides support for this argument.

2.4. Quadratic Compatibility Condition

We now bridge our QCC assumption (Definition 4) with the more standard restricted strong

convexity (RSC) condition adapted to our setting; the RSC condition is common in the high-

dimensional statistics and low-rank matrix factorization literature (Negahban and Wainwright

2011, 2012, Negahban et al. 2012, Klopp 2014). We prove that the RSC condition holds with high

probability in the low-rank matrix factorization problem for the commonly-studied case of gaussian

data as well as our word co-occurrence count data.

Definition 5 (RSC). The operator A satisfies restricted strong convexity (RSC(U∗, η, τ)) with

matrix U∗, constant η and function τ if

1

n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2 ≥ η‖∆U∗T +U∗∆T + ∆∆T‖2F − τ(n,d, r)‖∆‖22,1

for any ∆∈D⊂Rd×r.

Our condition closely resembles Definition 2 of Negahban et al. (2012). RSC conditions are an

alternative to compatibility conditions that provide a weak convexity guarantee for the problem.

Indeed, without the last term on the right hand side, the RSC condition is reduced to a minimum

eigenvalue condition on a specific low-rank subspace. Typically, the function τ is a small term

that is model-dependent and relies on parameters such as n,d, r (see, e.g., Section 4 in Negahban

et al. 2012). The following proposition shows that QCC holds given the above RSC condition when

considering a bounded set of feasible ∆, i.e., ‖∆‖2,1 ≤ L̄ for some positive constant L̄. Focusing on

bounded ∆ is not restrictive since we will formulate our transfer learning optimization problem

over a compact set in the following section.

Proposition 1. Assume A satisfies RSC(U∗, η, τ) on Rd×r and ‖U∗‖2,∞ ≤ D√
d

for some constant

D > 0. If n and d are such that ησ2
r (U∗)
32s

≥ 4ηDL̄√
d

+ τ(n,d, r), then A satisfies QCC(U∗, κ) with

κ= 2ησ2
r(U

∗).
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The proof is provided in Appendix A. Note that we’ve imposed that the “row-spikiness” of the

matrix U∗ is bounded, i.e., ‖U∗‖2,∞ ≤ D√
d
, to ensure identifiability (see, e.g., similar assumptions

in Agarwal et al. 2012, Negahban and Wainwright 2012). In other words, U∗ itself is unlikely

to be row-sparse. This matches practice since individual word embeddings (rows) are never zero.

Furthermore, one need not employ our transfer learning approach when U∗ is row-sparse, since the

sample complexity of directly estimating U∗ is already low.

Proposition 2 (proof in Appendix A) below shows that an RSC condition holds with high prob-

ability when the linear operator A is sampled from a gaussian ensemble (the most commonly

considered setting in the literature). To simplify notation, we define the matrix vectorization opera-

tor vec :Rd1×d2→Rd1d2 with vec(Θ) = [Θ(·,1)T ,Θ(·,2)T , · · · ,Θ(·,d1)T ]T . Define an operator TΣ :Rd×d→
Rd×d such that vec(TΣ(Θ)) =

√
Σvec(Θ). We still consider ‖∆‖2,1 ≤ L̄.

Proposition 2. Consider a random operator A sampled from a Σ-gaussian ensemble, i.e.,

vec(Ai)∼N(0,Σ). Let Σ′ =K(d,d)ΣK(d,d) with K(d,d) being the commutation matrix, and let

Σ =

Σ̄11 Σ̄12 · · · Σ̄1d

...
...

. . .
...

Σ̄d1 Σ̄d2 · · · Σ̄dd

 , and Σ′ =

Σ̄′11 Σ̄′12 · · · Σ̄′1d
...

...
. . .

...
Σ̄′d1 Σ̄′d2 · · · Σ̄′dd

 ,
with Σ̄ij ∈ Rd×d the covariance matrix of the ith and jth columns of Ai. Then, with probability

greater than 1− c exp(−c′n) for some constants c, c′ > 0, we have for any ∆,

‖A(∆U∗T +U∗∆T + ∆∆T )‖√
n

≥ 1

4
‖TΣ(∆U∗T +U∗∆T + ∆∆T )‖F − 3C6

(√
r

n
+

3

2

√
logd

n

)
‖∆‖2,1,

where C6 = 2L̄maxi∈[d2]

√
Σ(i,i) +σ1(U∗)

(
maxi∈[d]

√
σ1(Σ̄ii) + maxi∈[d]

√
σ1(Σ̄′ii)

)
.

We now move to our word embedding model, where our observation matrices Ai are basis matri-

ces. The next result reinforces our claim that a similar RSC condition holds with high probability in

this setting. Recall that we encode a randomly sampled word pair (j, k) in a basis matrix Ai ∈Rd×d,
whose (j, k) entry equals 1 and 0 otherwise — i.e., Ai =Ejk where Ejk is the basis matrix with entry

(j, k) being 1 and 0 otherwise. Thus, we consider the linear operator A being sampled from a stan-

dard weighted sampling distribution Π = {πjk}j,k∈[d] with bounded πjk, where πjk = P(Ai =Ejk);

a similar sampling distribution is considered in prior work, e.g., Klopp (2014) and Negahban and

Wainwright (2012). Define the L2(Π) norm of a matrix Θ as ‖Θ‖2L2(Π) =E[〈Ai,Θ〉2].

Proposition 3. Consider a random operator A sampled from a weighted sampling ensemble

Π = {πjk}j,k∈[d] with µ1
d2 ≤ πjk ≤ µ2

d2 for some constant µ1, µ2. Then, with probability greater than

1− c exp( c′

B4n) for some constants c, c′ > 0, we have for any ∆∈ {∆ | ‖∆U∗T+U∗∆T+∆∆T ‖∞
‖∆U∗T+U∗∆T+∆∆T ‖L2(Π)

≤B},

1

n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2 ≥ µ1

4d2
‖∆U∗T +U∗∆T + ∆∆T‖2F − 36C2

7

(√
logd

nd2
+

logd

n

)2

‖∆‖22,1,
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where C7 = 88B(L̄(
√

2µ2 + 4/3) + 2σ1(U∗)(
√

4rµ2 + 8/3)), and B is a positive constant.

We give a proof in Appendix A. Note that, by construction of the observation matrices in our word

embedding model (described in §2.1), each πjk = 1/d2 so µ1, µ2 = 1 in Proposition 3 above. This

is because, for a given pair (j, k), we draw exactly n samples, among which each sample i has the

observation matrix Ai =Ejk. Therefore, out of the total d2n samples, we can find Ai takes value

Ejk with equal probability for all d2 pairs of (j, k); that is, πjk = P(Ai =Ejk) = 1/d2.

As discussed earlier, due to the low signal-to-noise ratio of the operator A in the word embedding

setting, the RSC condition (as well as the QCC condition, by Proposition 1) hold with parame-

ters scaling as O( 1
d2 ). Therefore, when we discuss our bounds for the word embedding problem

(Corollary 1–3), we will scale the parameters by 1
d2 .

3. Group-Sparse Transfer Learning

In this section, we describe our proposed transfer learning estimator that combines gold and proxy

data to learn domain-specific word embeddings. We prove sample complexity bounds, discuss local

minima, and illustrate how our estimator can also be leveraged with nonlinear word embedding

algorithms such as GloVe.

3.1. Estimation Procedure

Our proposed two-step transfer learning estimator is as follows:

Ûp =arg min
Up

1

np
‖Xp−Ap(UpUT

p )‖2,

ÛTL
g = arg min

Ug :‖Ug−Ûp‖2,1≤2L

1

ng
‖Xg −Ag(UgUT

g )‖2 +λ‖Ug − Ûp‖2,1. (3)

The first step estimates the proxy word embeddings from a large text corpus; the second step

estimates gold word embeddings from limited domain-specific data, regularizing our estimates

towards the estimated proxy embeddings via a group-sparse penalty term.

As discussed earlier, our estimator aims to exploit the fact that the bias term ∆∗U =U∗g −U∗p is

group-sparse, and can therefore be estimated much more efficiently than U∗g itself. In particular, a

simple variable transformation on (3) in terms of ∆U yields:

∆̂U = arg min
∆U :‖∆U‖2,1≤2L

1

ng
‖Xg −Ag((Ûp + ∆U)(Ûp + ∆U)T )‖2 +λ‖∆U‖2,1, (4)

where our final estimator for the gold data is ÛTL
g = ∆̂U + Ûp. Since we have a large proxy dataset,

we expect Ûp ≈U∗p ; when this is the case, we will show that the second stage can efficiently debias

the proxy estimator using limited gold domain-specific data. Since our problem is nonconvex and

nonsmooth, we follow Loh and Wainwright (2015) and define a compact search region for ∆U —
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i.e., ‖∆U‖2,1 ≤ 2L. Here, L is a tuning parameter that should be chosen large enough to ensure

feasibility, i.e., we will assume that ‖∆∗U‖2,1 = ‖U∗g −U∗p ‖2,1 ≤L.

In (3), the regularization parameter λ trades off bias and variance. When λ→ 0, we recover the

usual low-rank estimator on gold data, which is unbiased but has high variance due to the scarcity

of domain-specific data; when λ→∞, we simply obtain the proxy word embeddings, which have

low variance but are biased due to domain mismatch. Our main result will provide a suitable value

of λ to appropriately balance the bias-variance tradeoff in this setting.

One technical challenge is that, while the group-sparse penalty in (4) would normally be opera-

tionalized to recover a group-sparse “true” parameter, this is not the case here due to estimation

noise from our first stage. Specifically, the true minimizer of the (expected) low-rank objective on

gold data is U∗g ; then, under our variable transformation ∆ =Ug− Ûp, the corresponding parameter

we wish to recover in (4) is not ∆∗U but rather

∆̃U = ∆∗U − ν,

where ν = Ûp − U∗p is the residual noise from estimating the proxy word embeddings in the first

step. But ∆̃U is not row-sparse unlike ∆∗U , since ν is not sparse. Thus, we may be concerned that

the faster convergence rates promised for the group LASSO estimator may not apply here. On the

other hand, we expect our estimation error ‖ν‖ to be small since we are in the regime where our

proxy dataset is large. Thus, we expect ∆̃U to be approximately row-sparse. We will prove that

this is sufficient to recover ∆̃U (and therefore U∗g ) at faster rates.

Remark 4. The two-step design of our estimator provides significant practical benefits. In prac-

tice, training on a large text corpus can be computationally intensive, so analysts often prefer to

download pre-trained word embeddings Ûp; these can directly be used in the second step of our

estimator, which is then trained on the much smaller domain-specific dataset. Furthermore, our

approach does not require the proxy and gold datasets to be simultaneously available at training

time, which is desirable in the presence of regulatory or privacy constraints.

3.2. Main Result

Our main result characterizes the estimation error of our transfer learning estimator ÛTL
g . We first

introduce the following concept of smoothness of our operator A from Chi et al. (2019); we obtain

tighter bounds with higher smoothness, but we show that our problem always satisfies some level

of smoothness (as will be made precise in Remark 5).4

4 Note that smoothness here refers to the operator A; our objective function is not smooth due to the group-sparse
penalty.
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Definition 6. A linear operator A : Rd×d→ Rn satisfies the r-smoothness(β) condition if for

any Z ∈Rd×d with rank(Z)≤ r, we have that

1

n
‖A(Z)‖2 ≤ β‖Z‖2F .

Intuitively, smoothness alleviates the nonconvexity of the problem, making it easier to identify

U∗g in spite of the nonconvex loss function (Chi et al. 2019). Note that the weakest form of the

assumption is when r= 1, i.e., the upper bound is only imposed for matrices Z with rank(Z)≤ 1.

Thus, we state the following result with a 1-smoothness assumption on the gold operator:

Theorem 1. Assume Ag satisfies 1-smoothness(βg). Let

λ= max


√

2048L2βgσ2
g

ng
log(

10d2

δ
),

√√√√256βgσ2
gσ

2
1(U∗g )

ng

(
r+ 2

√
r log(

5d

δ
) + 2 log(

5d

δ
)

) .

Suppose np and d are such that
Lσr(U∗p )(3αp−2βp)

8
√
d

≥
√

8βpσ2
p

np

(
2r(2d+ 1) log(36

√
2) + log( 10

δ
)
)
. Then,

with probability at least 1− δ, we have

`(ÛTL
g ,U∗g )≤C1s

√
σ2
g

ng
log(

10d2

δ
) +C2s

√
σ2
g

ng

(
2r+ 3 log(

5d

δ
)

)

+C3

√
σ2
p

np
d

(
2r(2d+ 1) log(36

√
2) + log(

10

δ
)

)

=O

√σ2
gs

2(r+ log(d
2

δ
))

ng
+

√
σ2
p(rd

2 + d log( 1
δ
))

np


where C1 =

16
√

2048L2βg

κ
, C2 =

16
√

256βgσ2
1(U∗g )

κ
, and C3 =

128
√

2βp

(3αp−2βp)σr(U∗p )
.

We provide a proof in Appendix B. The estimation error bound of our transfer learning estimator

consists of two parts and depends on the gold and proxy data respectively. The second term only

depends on the proxy data, and captures the variance of estimating the proxy embeddings U∗p in

the first step of (3). The first term characterizes the estimation accuracy of identifying the bias

term ∆∗U via group-sparse penalty in the second stage of (3). Note that the required condition on

np and d in Theorem 1 is easily satisfied in our “proxy-rich and gold-scarce” setting—i.e., as long

as np� d2, we only require ng� log(d).

Remark 5. The operator A naturally satisfies smoothness (Definition 6) as long as A has

bounded eigenvalues. Specifically, let σmax(A∗A) be the maximum eigenvalue of A∗A, defined as

σmax(A∗A) = sup
‖R‖F=1

〈R,A∗(A(R))〉.

Then A satisfies r-smoothness(β) for any β ≤ σmax(A
∗A
n

) and r ≤ d. Thus, we can simply take

βg = σmax(
A∗gAg
n

) and r= 1 to satisfy the smoothness assumption in Theorem 1.
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Our proof strategy differs from the standard analysis of the Burer-Monteiro method for low-

rank problems (Ge et al. 2017) because our focus is on identifying group-sparse structure within

a low-rank problem instead of identifying the low-rank structure itself. Furthermore, Ge et al.

(2017) mainly base their analysis on the Hessian of the objective function, while the Hessian of our

nonsmooth objective function (4) is not well-defined. Our proof adapts high-dimensional techniques

for the group LASSO estimator (Lounici et al. 2011) to the nonconvex low-rank matrix factorization

problem. Our analysis accounts for quartic (rather than the typical quadratic) dependence on the

target parameter, for which we leverage QCC rather than the standard compatibility condition.

In §4, we contrast the error bounds for our transfer learning estimator with those we obtain on

classical low-rank estimators (on just proxy or gold data), illustrating significant gains via transfer

learning.

Word Embeddings. Next, we examine the scaling of this bound specifically for word embed-

ding model given in (2) (described in §2.1). Recall that, for word co-occurrence count data, the

observation matrices Ai are basis matrices, resulting in a lower signal-to-noise ratio than the more

typical gaussian ensemble observation matrices studied in the general low-rank matrix factoriza-

tion literature. Thus, as discussed in Remarks 2–3, we scale the parameters in the QCC and RWC

assumptions by 1
d2 . However, this is counter-balanced by the fact that we have d2 more samples

in the word embedding setting. In particular, for a corpus of n + 1 words (n consecutive word

pairs), we obtain one observation for each observed word pair and each of d2 possible basis matrices

Ai =Ejk with j, k ∈ [d] (see details in §2.1). This results in d2n samples. Put together, we obtain

the following result on the error of our transfer learning estimator for our word embedding model:

Corollary 1. Assume Ag satisfies QCC(U∗g ,
κ
d2 ) and 1-smoothness(

βg
d2 ), and Ap satisfies r-

RWC(
αp
d2 ,

βp
d2 ). Let

λ= max


√

2048L2βgσ2
g

d4ng
log(

10d2

δ
),

√√√√256βgσ2
gσ

2
1(U∗g )

d4ng

(
r+ 2

√
r log(

5d

δ
) + 2 log(

5d

δ
)

) .

Suppose np and d are such that
Lσr(U∗p )(3αp−2βp)

8
√
d

≥
√

8βpσ2
p

np
(2r(2d+ 1) log(36

√
2) + log(10

δ
)). Then,

with probability at least 1− δ, the estimate ÛTL
g of problem (2) satisfies

`(ÛTL
g ,U∗g ) =O

√σ2
gs

2(r+ log(d
2

δ
))

ng
+

√
σ2
p(rd

2 + d log( 1
δ
))

np

 .

The result follows Theorem 1 directly by appropriately scaling the parameters and noting that

we have d2ng gold and d2np proxy observations. Note that the signal-to-noise ratio and sample

sizes counter-balance each other, so the error bound in Corollary 1 is of the same scale as the
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general bound we obtained in Theorem 1, despite the different setting/assumptions. Corollary 1

shows that our transfer learning estimator only requires a small amount of domain-specific textual

data (i.e., ng� logd) to obtain sufficient accuracy, when our analysis is supported by substantial

domain-agnostic data such as Wikipedia text (i.e., np� d2).

3.3. Local Minima

An important practical consideration is that the nonconvexity of the optimization problem in (3)

may result in our algorithm converging to a local rather than global minimum. Characterizing these

local minima is important to ensure that our estimator is computationally tractable in practice.

The RSC condition in Definition 5 (or equivalently QCC in Definition 4) holds for the global

minimum but may not apply to local minima; to that end, Loh and Wainwright (2015) propose an

alternative restricted strong convexity condition for nonconvex problems, enabling them to show

that the resulting local minima are within statistical precision of the global minimum. We build

on this last approach, adapting to our loss function:

f(∆U) =
1

ng
‖Xg −Ag((Ûp + ∆U)(Ûp + ∆U)T )‖2. (5)

In particular, we introduce the following weaker restricted strong convexity condition (that we term

LRSC) directly to the loss function (5) that is more likely to hold for the optimization landscape

of all local minima, yielding non-asymptotic bounds for local minima.

Assumption 3 (LRSC). The loss function in (5) satisfies the following restricted strong con-

vexity with constant η1, η2 and functions τ1(n,d, r), τ2(n,d, r):

EXg |Ag [〈∇f(∆̃U + ∆)−∇f(∆̃U),∆〉]≥

{
η1‖∆‖2F − τ1(ng, d, r)‖∆‖22,1, ∀‖∆‖F ≤ ρ, (6a)

η2‖∆‖F − τ2(ng, d, r)‖∆‖2,1, ∀‖∆‖F ≥ ρ. (6b)

for any ∆∈Rd×r and some constant ρ> 0.

Our LRSC condition provides a lower bound on the expected Hessian of the loss function in

(5), conditioned on a fixed design, where the expectation is taken over the randomness of the

noise terms. Note that the LRSC condition we propose is weaker than the original RSC condition

proposed in Loh and Wainwright (2015), which lower bounds the realized Hessian directly. This is

because the usual problem formulation is quadratic in the target parameter, and thus the Hessian

is a deterministic quantity given a fixed design. In contrast, our transfer learning objective induces

a quartic dependence on the target parameter ∆U , and thus our Hessian is a random variable that

depends on the realized noise terms, introducing additional complexity.

Intuitively, the LRSC condition serves a similar function as our earlier RSC condition (Definition

5), imposing restricted weak convexity on our loss so that we can recover high-quality estimates



19

of the gold embeddings U∗g . We now show that the LRSC (for local minima) is weaker than

the RSC (for the global minimum) we used in Theorem 1. Note that LRSC is composed of two

separate statements; condition (6a) restricts the geometry locally around the global minimum,

and condition (6b) provides a lower bound for parameters that are well-separated from the global

minimum. First, the following Proposition 4 shows that condition (6a) is equivalent to the more

traditional RSC condition for convex problems (Definition 5) in a neighborhood of the global

minimum. Next, Lemmas 8–9 in Loh and Wainwright (2015) show that (6a) usually implies (6b),

given that the function τ2(n,d, r) in (6b) typically scales as O(
√
τ1(n,d, r)).

Proposition 4. When ‖∆‖F ≤ ρ, (i) for any Ag that satisfies RSC(
√

2
3
U∗g , η, τ) and r-

smoothness(βg) with 9η ≥ βg, condition (6a) holds with ρ ≤ σr(U∗g )/3, η1 = 4ησr(U
∗
g )2 and τ1 =

3τ/2; (ii) for any loss function that satisfies condition (6a), Ag satisfies RSC(
√

2
3
U∗g , η, τ) with

η= η1
2(2σ1(U∗g )+3ρ/2)2

and τ = τ1/3.

The proof is provided in Appendix C. The following theorem shows that LRSC ensures all local

minima are within statistical precision of the true parameter.

Theorem 2. Assume LRSC holds for loss function f in (5) and Ag satisfies 1-smoothness(βg).

Let

λ= max


√

32768L2βgσ2
g

ng
log(

10d2

δ
),

√√√√512βgσ2
gσ

2
1(U∗g )

ng

(
r+ 2

√
r log(

5d

δ
) + 2 log(

5d

δ
)

)
,

4

3
τ2(ng, d, r),16Lτ1(ng, d, r)

}
.

Suppose np and d are such that
Lσr(U∗p )(3αp−2βp)

8
√
d

≥
√

8βpσ2
p

np
(2r(2d+ 1) log(36

√
2) + log( 10

δ
)), and ng

and d are such that λ≤ ρη2/(8L). Then, any local minimum ÛTL
g satisfies

`(ÛTL
g ,U∗g ) =O

√σ2
gs

2(r+ log(d
2

δ
))

ng
+

√
σ2
p(rd

2 + d log( 1
δ
))

np


with probability at least 1− δ.

We provide a proof in Appendix C. In particular, the above estimation error bound for all local

minima has the same scale as Theorem 1 for the global minimum, ensuring that our estimator is

computationally tractable in practice.
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3.4. Transfer Learning with GloVe

Our transfer learning approach extends straightforwardly to nonlinear loss functions such as

GloVe (Pennington et al. 2014), a state-of-the-art technique often used to construct word embed-

dings in practice. The original GloVe method solves the following optimization problem:

min
Ui,Vj ,bi,cj

∑
i,j∈[d]

f(Yij)(log(Yij)− (UiV
T
j + bi + cj))

2, (7)

where d is the number of unique words, Yij is the total number of co-occurrences of word pair (i, j),

and {Ui}i∈[d] and {Vj}j∈[d] are two sets of word embeddings (one typically takes the sum of the two

Ui + Vi as the final word embedding for word i in a post-processing step). {bi} and {cj} ∈ R are

bias terms (tuning parameters) designed to improve fit. Finally, f(x) is a non-decreasing weighting

function defined as

f(x) =

{
(x/xmax)α, if x< xmax,

1, otherwise.

Pennington et al. (2014) set the tuning parameters above to be xmax = 100 and α= 3/4.

We first show that our model (2) includes a linear version of GloVe as a special case. Define the

index set Ijk = {i∈ [d2n] |Ai =Ejk}, where remember Ejk is a basis matrix with entry (j, k) being

1 and 0 otherwise. Taking the average of (2) over the set Ijk, we have

1

|Ijk|
∑
i∈Ijk

Xi =

〈
1

|Ijk|
∑
i∈Ijk

Ai,Θ
∗

〉
+

1

|Ijk|
∑
i∈Ijk

εi = Θ∗(j,k) +
1

|Ijk|
∑
i∈Ijk

εi.

In other words, we can create a sample word co-occurrence matrix as an empirical estimate of Θ∗;

factorizing this provides an estimate of U∗. GloVe then deviates from our linear model by taking

the logarithm of Yjk =
∑

i∈Ijk
Xi, adding bias terms for extra model complexity, and weighting up

frequent word pairs through f . Moreover, it implements alternating-minimization with asymmetric

factorization to speed up optimization; recall that GloVe takes the sum Ui +Vi to obtain the word

embedding for word i. To leverage our transfer learning approach, we can simply add an analogous

group LASSO penalty to this objective:

min
Ui,Vj ,bi,cj

∑
i,j∈[d]

f(Yij)(log(Yij)− (UiV
T
j + bi + cj))

2 +λ
∑
i∈[d]

‖(U i +V i)− Û i
p‖, (8)

where Ûp is a matrix of pre-trained (proxy) word embeddings. We also evaluate this approach

empirically in §5.2 on real datasets.

4. Comparing Error Bounds

In this section, we assess the value of transfer learning by comparing to the bounds we obtain if

we trained our embeddings on only gold or proxy data.
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4.1. Gold Estimator

A natural unbiased approach to learning domain-specific embeddings U∗g is to apply the Burer-

Monteiro approach to only gold data:

Ûg = arg min
Ug

1

ng
‖Xg −Ag(UgUT

g )‖2. (9)

We follow the approach of Ge et al. (2017) to obtain error bounds on Ûg under the following

standard regularity assumption:

Assumption 4. The gold linear operator Ag satisfies 2r-RWC(αg, βg).

Note that Assumption 4 may not hold in our regime of interest where ng� d. As discussed in §2.3,

in general, we need n& dr observations to satisfy RWC, and so the gold estimator may not satisfy

any nontrivial guarantees under our data-scarce setting. In contrast, our QCC (Assumption 2) is

mild and holds in the high-dimensional setting when ng� log(d). For the purposes of comparison,

we examine the conventional error bounds for problem (9) under RWC.

Theorem 3. The estimation error of the gold estimator has

`(Ûg,U
∗
g )≤C4

√
σ2
gd(2r(2d+ 1) log(36

√
2) + log( 2

δ
))

ng

=O

√σ2
g(rd

2 + d log( 1
δ
))

ng


with probability at least 1− δ, where C4 =

16
√

2βg

(3αg−2βg)σr(U∗g )
.

We give a proof in Appendix D. Theorem 3 shows that when we have sufficient gold samples

(i.e., ng� d2), the gold estimator achieves estimation error scaling as O(
√
d2/ng). However, when

ng . d2, the gold estimator has very high variance, resulting in substantial estimation error.

Next we apply this result to our word embedding model as described in §3.2.

Corollary 2. Assume Ag satisfies r-RWC(
αg
d2 ,

βg
d2 ). Then, with probability at least 1− δ, the

estimation error of the gold estimator of problem (2) satisfies

`(Ûg,U
∗
g ) =O

√σ2
g(rd

2 + d log( 1
δ
))

ng

 .

This result directly follows Theorem 3 by scaling the parameters in our assumptions by 1/d2 and

expanding the number of samples to d2ng (see analogous discussion under Corollary 1). Indeed,

Corollary 2 shares a similar scaling and insight as Theorem 3.
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4.2. Proxy Estimator

An alternative approach is to estimate domain-agnostic word embeddings U∗p from the proxy data,

and ignore the domain-specific bias ∆∗U :

Ûp = arg min
Up

1

np
‖Xp−Ap(UpUT

p )‖2. (10)

This corresponds to the common practice of using pre-trained word embeddings. Recall that we

have already made the RWC assumption for Ap in Assumption 1.

Theorem 4. The estimation error of the proxy estimator has

`(Ûp,U
∗
g )≤ ‖∆∗U‖2,1 +ω+C5

√
σ2
pd(2r(2d+ 1) log(36

√
2) + log( 2

δ
))

np

=O

‖∆∗U‖2,1 +ω+

√
σ2
p(rd

2 + d log( 1
δ
))

np


with probability at least 1− δ, where ω= ‖U∗p (R(Ûp,U∗p )−R(Ûp,U∗g ))‖2,1 and C5 =

16
√

2βp

(3αp−2βp)σr(U∗p )
.

We give a proof in Appendix E, following the approach of Ge et al. (2017). However, as discussed

in §2.1, recall that U∗ is only identifiable only up to an orthogonal change-of-basis, so we consider

the rotation R(Û,U∗) that best aligns Û with the true parameter U∗. Therefore, to compare Ûp with

the true gold word embeddings U∗g , we use the rotation R(Ûp,U∗g ). Yet, Ûp is best aligned with U∗p

under a different rotation R(Ûp,U∗p ). The choice of rotation affects the error from the group-sparse

bias term ∆∗U = U∗g −U∗p , resulting in a term ω accounting for the misalignment between the two

rotations R(Ûp,U∗g ) and R(Ûp,U∗p ) in Theorem 4.

Since we np is large in our regime of interest, the third term in the estimation error bound

(capturing the error of Ûp−U∗p ) is small, scaling asO(d/
√
np). Instead, the first two terms capturing

the bias between U∗p and U∗g dominate the estimation error. Note that when ∆∗U → 0, we have

R(Ûp,U∗g ) → R(Ûp,U∗p ). Thus, when there are few domain-specific differences between the gold and

proxy data, the proxy estimator can be more accurate than the gold estimator.

Next we apply this result to our word embedding model as described in §3.2.

Corollary 3. Assume Ap satisfies r-RWC(
αp
d2 ,

βp
d2 ). Then, with probability at least 1− δ, using

ω specified in Theorem 4, the estimation error of the proxy estimator of problem (2) satisfies

`(Ûp,U
∗
g ) =O

‖∆∗U‖2,1 +ω+

√
σ2
p(rd

2 + d log( 1
δ
))

np

 .

This result directly follows Theorem 4 by scaling the parameters in our assumptions by 1/d2 and

expanding the number of samples to d2np (see analogous discussion under Corollary 1). Indeed,

Corollary 3 shares a similar scaling and insight as Theorem 4.
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Estimator TL Gold Proxy

Error Bound O
(√

s2r
ng

+
√

rd2

np

)
O
(√

rd2

ng

)
O
(
‖∆∗U‖2,1 +ω+

√
rd2

np

)
Table 4.1 Error bound for the transfer learning, gold and proxy estimators. ω is defined in Theorem 4. The

error bounds for word embeddings are the same.

4.3. Comparison of Error Bounds

We now summarize and compare the estimation error bounds we have derived so far in Table 4.1.

We first consider the general low-rank matrix factorization environment. In the regime of interest—

i.e., lots of proxy data (np� d2) but limited gold data (ng� d2)—the upper bound of our transfer

learning estimator is much smaller than the conventional scaling of error bounds applied to the

gold or proxy data alone. In particular, when our np is sufficiently large, our error bound scales as√
logd/ng whereas the gold error bound scales as

√
d2/ng, i.e., transfer learning yields a significant

improvement in the vocabulary size d (recall that s, r� d). On the other hand, the proxy error

bound is dominated by the size of the domain bias term ‖∆∗U‖2,1, implying that it never recovers

the true gold word embeddings U∗g . In contrast, transfer learning can leverage limited gold data

to efficiently estimate U∗g by recovering the bias between U∗g and U∗p based on a sufficiently good

estimate of U∗p . Note that Corollary 1-3 for the word embedding model yield the same error bounds,

and thus Table 4.1 applies to the word embedding setting as well.

5. Experiments

We evaluate our approach on synthetic data and real Wikipedia data. On real data, we also compare

our transfer learning estimator with a state-of-the-art fine-tuning heuristic Mittens (Dingwall and

Potts 2018) to identify domain-specific words. We find that a significant drawback of fine-tuning

heuristics is that they are relatively uninterpretable, in addition to providing no theoretical guar-

antees. We primarily present our main results here and relegate experimental details to Appendix

G; we also provide additional robustness checks and experimental support in Appendix H.

5.1. Synthetic Data

We first generate synthetic data satisfying our problem formulation—in particular, we have abun-

dant proxy data (np = 5000), limited gold data (ng = 50), and a sparse number s� d of words with

altered embeddings. We consider various values of the vocabulary size d, sparsity s, and rank r.

Recall that our estimates of the embeddings U∗g are invariant to rotations (see discussion in §2.1),

so we evaluate the estimation error of Θ∗g using the rotation-invariant Frobenius norm. Figure 3

shows the Frobenius error of our transfer learning estimator as well as the classical low-rank esti-

mators using gold (§4.1) or proxy (§4.2) data alone. Details on data generation and hyperparameter

selection (through cross-validation) are provided in Appendix G.1.
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(d) d= 40, r= 5, s= 15

Figure 3 Bars depict Frobenius norm estimation errors of Θg averaged over 100 trials, with error bars the

corresponding 95% confidence intervals. ‘TL’ represents our transfer learning estimator.

Matching our theoretical results in Table 4.1, we find that our transfer learning estimator substan-

tially outperforms the gold and proxy estimators by exploiting group-sparse structure, efficiently

debiasing the proxy data with very limited gold data. The gold estimator generally performs poorly

in the low-data regime, and its accuracy deteriorates with increasing model complexity (i.e., larger

d and r) as suggested by Theorem 3. The proxy estimator generally performs better than the gold

estimator due to its large sample size (reflecting its popularity in practice) but performs worse than

our transfer learning estimator, particularly when the domain-specific bias is large (i.e., larger s)

as suggested by Theorem 4.

We conduct a series of additional experiments evaluating our approach in Appendix H.1. At

a high level, we find the following. Our transfer learning estimator performs substantially better

than the gold estimator for small to moderate gold sample sizes—we improve performance even for

moderate ng ≥ d2, and perform comparably for large ng� d2. Next, we find that transfer learning

becomes more challenging as the gold and proxy tasks become more heterogeneous, i.e., larger

magnitude of s,∆∗U . Finally, we test the robustness of our estimator’s error to the specification

of the hyperparameter λ, which is often unknown and must be estimated via cross-validation on
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noisy data. We find that our performance is remarkably stable with changes of even an order of

magnitude in λ. Details and results are provided in Appendix H.1.

5.2. Wikipedia

While synthetic data is generated to meet our assumptions, this may not be the case on real data.

To this end, we now evaluate performance on real Wikipedia articles (a commonly used source for

text data). We cannot directly evaluate the estimation error of our embeddings since we don’t have

access to ground truth; instead, we aim to identify domain-specific words (i.e., words that have

special meaning/usage in the target domain). A significant advantage of our method is that it is

more interpretable, accurately identifying domain-specific words.

In this experiment, we evaluate our approach on 37 individual domain-specific Wikipedia articles

from the following four domains: finance, math, computer science, and politics. The articles selected

all have a domain-specific word in their title—e.g., “put” in the article “put option” (in finance),

“closed” in “closed set” (in math), “object” in computing, and “left” in “left wing politics” (in

politics). We define a word to be a domain-specific word if any of its definitions on Wiktionary

is labeled with key words from that domain—i.e., “finance” or “business” for finance, “math”,

“geometry”, “algebra”, or “group theory” for math, “computing”, “computer” or “programming”

for computer science, and “politics” for politics.

We leverage our transfer learning approach using the popular GloVe pre-trained word embeddings

as the proxy estimator,5 and evaluate its performance based on the identification accuracy of

domain-specific words for each individual Wikipedia article. We compare our approach with a

state-of-the-art fine-tuning heuristic Mittens (Dingwall and Potts 2018), as well as random word

selection. Table 5.1 shows the average F1 score of identifying domain-specific words (normalized by

article length) across articles in each domain. While we observe that other approaches also identify

domain-specific words, our approach does so more effectively, most likely since our group-sparsity

assumption is at least partly supported by these datasets (recall Fig. 1 from the introduction).

Table 5.2 shows the top 10 words ranked by our approach and by Mittens for one article in each

domain—indeed, we observe that our approach is much more effective at identifying domain-specific

words (shown in bold). Details provided in Appendix G.2.

Additionally, we consider a version of our transfer learning estimator adapted to the popular

GloVe objective (see Eq. (8) and accompanying discussion in §3.4). As shown in Table 5.3, our

transfer learning estimator and its GloVe analog perform comparably, demonstrating that our

technical insights carry over naturally to off-the-shelf word embedding approaches.

5 Note that the goal of our transfer learning approach is to efficiently use publicly available pre-trained word embed-
dings together with domain textual data. It is especially computationally costly to train word embeddings from the
whole Wikipedia dump, so we use the GloVe pre-trained word embedding as our proxy estimator.
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Domain TL Mittens Random

Finance 0.2320 0.1829 0.1376
Math 0.2660 0.2175 0.1543
Computing 0.2527 0.1963 0.1430
Politics 0.1873 0.1571 0.0640

Table 5.1 Average F1 score of domain-specific word identification (normalized by article length) for four
domains respectively. “TL” represents our transfer learning approach.

Short Prime Number Cloud Computing Conservatism
TL Mittens TL Mittens TL Mittens TL Mittens

short short prime prime cloud cloud party party
shares percent formula still data private conservative conservative
price due numbers formula computing large social second
stock public number de service information conservatism social

security customers primes numbers services devices government research
selling prices theorem number applications applications liberal svp

securities high natural great private security conservatives government
position hard integers side users work political de

may shares theory way use engine right also
margin price product algorithm software allows economic church

Table 5.2 Top 10 words, sorted by absolute change of word embedding from source to target domain.
Domain-specific words (threshold set to top 10% of the rank) are labeled in bold.

Domain TL GloVeTL

Finance 0.2320 0.2336
Math 0.2660 0.2499
Computing 0.2527 0.2437
Politics 0.1873 0.1817

Table 5.3 Average F1 score of domain word identification (normalized by article length) for four domains
respectively. “TL” represents our transfer learning approach, and “GloVeTL” represents our method adapted to

the GloVe objective.

We conduct a series of additional experiments evaluating our approach in Appendix H.2. In

particular, we compare performance with two more recent algorithms from the natural lan-

guage processing literature that combine domain-specific word embeddings with pre-trained word

embeddings: Canonical Correlation Analysis (CCA), and its closely related kernelized variant

KCCA (Sarma et al. 2018). Like Mittens, these are also heuristics that do not provide any the-

oretical guarantees on their performance. We find our estimator outperforms these approaches in

the same domain-specific word identification task. Furthermore, we show that this improvement

is consistent across different thresholds that determine the criteria for a domain-specific word,

illustrating that our results are robust to parameter selection.

6. Conclusions

We propose a novel estimator for transferring knowledge from large text corpora to learn word

embeddings in a data-scarce domain of interest. We cast this as a low-rank matrix factorization
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problem with a group-sparse penalty, regularizing the domain embeddings towards existing pre-

trained embeddings. Under a group-sparsity assumption and standard regularity conditions, we

prove that our estimator requires substantially less data to achieve the same error compared to

conventional estimators that do not leverage transfer learning. Our experiments demonstrate the

effectiveness of our approach in the low-data regime, both on synthetic data and a domain word

identification task on Wikipedia articles.

While our focus has been on learning word embeddings, unsupervised matrix factorization models

have also been widely applied for recommender systems and causal inference, which may open up

new lines of inquiry. For instance, in recommender systems, one could consider a bandit approach

that further collects domain-specific data in an online fashion (Kallus and Udell 2020); in causal

inference, one could treat counterfactuals as missing data and leverage a factor model (Xiong and

Pelger 2019). There has also been significant recent interest in low-rank tensor recovery prob-

lems (Goldfarb and Qin 2014, Zhang et al. 2019, Shah and Yu 2019), where one aims to learn to

make recommendations across multiple types of outcomes (Farias and Li 2019) or to learn treat-

ment effects across multiple experiments (Agarwal et al. 2020). Our transfer learning approach can

be used in conjunction with these methods in order to leverage data from other domains.
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Appendix A: Quadratic Compatibility Condition

Proof of Proposition 1 The RSC condition gives

1

n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2 ≥ η‖∆U∗T +U∗∆T + ∆∆T‖2F − τ(n,d, r)‖∆‖22,1. (11)

We lower bound the first term in inequality (11):

‖∆U∗T +U∗∆T + ∆∆T‖2F =‖∆U∗T +U∗∆T‖2F + ‖∆∆T‖2F + 4〈U∗∆T ,∆∆T 〉

=4‖∆U∗T‖2F + ‖∆∆T‖2F + 4〈U∗∆T ,∆∆T 〉

≥4‖∆U∗T‖2F + ‖∆∆T‖2F − 4|U∗∆T |∞|∆∆T |1

≥4‖∆U∗T‖2F + ‖∆∆T‖2F − 4‖U∗‖2,∞‖∆‖2,∞‖∆‖22,1

≥4‖∆U∗T‖2F + ‖∆∆T‖2F − 4
DL̄√
d
‖∆‖22,1.

where the second equality uses tr(X2) = ‖X‖2F . This gives us

1

n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2 ≥ 4η‖∆U∗T‖2F + η‖∆∆T‖2F − 4

ηDL̄√
d
‖∆‖22,1− τ(n,d, r)‖∆‖22,1.

Under the condition that ∑
j∈Jc

‖∆j‖ ≤ 7
∑
j∈J

‖∆j‖,

we can upper bound ‖∆‖22,1 with a constant scale of ‖∆‖2F :

‖∆‖22,1 = (
∑
j∈Jc

‖∆j‖+
∑
j∈J

‖∆j‖)2 ≤ (8
∑
j∈J

‖∆j‖)2 ≤ 64s‖∆‖2F .

Therefore, we have

1

n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2 ≥ 4ησr(U

∗)2

s
(
∑
j∈J

‖∆j‖)2 + η‖∆∆T‖2F − 64

(
4
ηDL̄√
d

+ τ(n,d, r)

)
(
∑
j∈J

‖∆j‖)2.

As long as n and d are such that

ησr(U
∗)2

32s
≥ 4

ηDL̄√
d

+ τ(n,d, r),

we can derive the quadratic compatibility condition

1

n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2 ≥ 2ησr(U

∗)2

s
(
∑
j∈J

‖∆j‖)2

with κ= 2ησr(U
∗)2. �

Proof of Proposition 2 Our proof is adapted from the proof in Raskutti et al. (2010) and that of Propo-

sition 1 in Negahban and Wainwright (2011). Let Ā : Rd×d→Rn with vec(Āi)∼N(0, I). Then, we have by

construction A(Θ) = Ā(TΣ(Θ)).

Consider the set R(t) = {∆ | ‖TΣ(∆U∗T +U∗∆T + ∆∆T )‖F = b,‖∆‖2,1 ≤ t} for any given b > 0. We aim

to lower bound

inf
∆∈R(t)

‖A(∆U∗T +U∗∆T + ∆∆T )‖= inf
∆∈R(t)

sup
u∈Sn−1

〈u,A(∆U∗T +U∗∆T + ∆∆T )〉,
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where Sn−1 is the (n−1)-dimension unit sphere. We define an associated zero-mean gaussian random variable

Zu,∆ = 〈u, Ā(TΣ(∆U∗T +U∗∆T + ∆∆T ))〉. For any pairs (u,∆) and (u′,∆′), we have

E[(Zu,∆−Zu′,∆′)2] = ‖u⊗TΣ(∆U∗T +U∗∆T + ∆∆T )−u′⊗TΣ(∆′U∗T +U∗∆′T + ∆′∆′T )‖2F ,

where ⊗ is the Kronecker product. Now consider a second zero-mean gaussian process Yu,∆ = b〈g,u〉 +

〈G,TΣ(∆U∗T +U∗∆T + ∆∆T )〉, where g ∈Rn and G ∈Rd×d have i.i.d. N(0,1) entries. For any pairs (u,∆)

and (u′,∆′), we have

E[(Yu,∆−Yu′,∆′)2] = b2‖u−u′‖2 + ‖TΣ(∆U∗T +U∗∆T + ∆∆T )−TΣ(∆′U∗T +U∗∆′T + ∆′∆′T )‖2F .

As ‖u‖= 1 and ‖TΣ(∆U∗T +U∗∆T + ∆∆T )‖F = b, it holds that

‖u⊗TΣ(∆U∗T +U∗∆T + ∆∆T )−u′⊗TΣ(∆′U∗T +U∗∆′T + ∆′∆′T )‖2F

≤ b2‖u−u′‖2 + ‖TΣ(∆U∗T +U∗∆T + ∆∆T )−TΣ(∆′U∗T +U∗∆′T + ∆′∆′T )‖2F ,

where we use the fact that 〈X,X −X ′〉 ≥ 0 for any matrix X,X ′ with ‖X‖F = ‖X ′‖F . Note that when

∆ = ∆′, the equality holds. Consequently, gaussian comparison inequalities, specifically Gordon’s inequality

(see, e.g., Raskutti et al. 2010), gives rise to

E
[

inf
∆∈R(t)

sup
u∈Sn−1

Zu,∆

]
≥E

[
inf

∆∈R(t)
sup

u∈Sn−1

Yu,∆

]
.

The gaussian process Yu,∆ has

E
[

inf
∆∈R(t)

sup
u∈Sn−1

Yu,∆

]
=E
[
b sup
u∈Sn−1

〈g,u〉
]

+E
[

inf
∆∈R(t)

〈G,TΣ(∆U∗T +U∗∆T + ∆∆T )〉
]

=bE [‖g‖]−E

[
sup

∆∈R(t)

〈G,TΣ(∆U∗T +U∗∆T + ∆∆T )〉

]
.

Using Lemma 10, the first term has E [‖g‖]≥
√
n/2 by calculating an integral of a chi-squared distribution.

For the second term,

〈G,TΣ(∆U∗T +U∗∆T + ∆∆T )〉= 〈TΣ(G),∆U∗T +U∗∆T + ∆∆T 〉

= 〈TΣ(G)U∗,∆〉+ 〈TΣ(G)TU∗,∆〉+ 〈TΣ(G),∆∆T 〉

≤ (‖TΣ(G)U∗‖2,∞+ ‖TΣ(G)TU∗‖2,∞+ L̄|TΣ(G)|∞)‖∆‖2,1,

where we use ‖∆‖2,1 ≤ L̄. Note that vec(TΣ(G))∼N(0,Σ). Lemma 9 gives that

E[|TΣ(G)|∞]≤ 2

√
max
i∈[d2]

Σ(i,i) log(
√

2d).

Finally, using Lemma 8 - 10 and Jensen’s inequality, we have

E[‖TΣ(G)U∗‖2,∞]≤max
i∈[d]

√
tr(U∗T Σ̄iiU∗) +

√
2 max
i∈[d]
‖U∗T Σ̄iiU∗‖ logd

≤ σ1(U∗) max
i∈[d]

√
σ1(Σ̄ii)(

√
r+

√
2 logd).
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Similar results hold for E[‖TΣ(G)TU∗‖2,∞]. Define Σ′ to be such that vec(TΣ(G)T ) ∼ N(0,Σ′) and hence

Σ′ =K(d,d)ΣK(d,d). K(d,d) ∈Rd2×d2
is a commutation matrix that transform vec(X) to vec(XT ) for X ∈Rd×d:

K(d,d) vec(X) = vec(XT ).

Note that Σ′ shares a similar property as Σ as K(d,d) is nonsingular and has only eigenvalues 1 or −1.

Therefore, we can obtain

E[‖TΣ(G)U∗‖2,∞+ ‖TΣ(G)TU∗‖2,∞+ L̄|TΣ(G)|∞]≤C6(

√
log(
√

2d) + (
√
r+

√
2 logd))≤C6(2

√
r+ 3

√
logd),

where C6 = 2L̄
√

maxi∈[d2] Σ(i,i) + σ1(U∗)(maxi∈[d]

√
σ1(Σ̄ii) + maxi∈[d]

√
σ1(Σ̄′ii)). Combining all the above

gives

E
[

inf
∆∈R(t)

‖Ā(TΣ(∆U∗T +U∗∆T + ∆∆T ))‖
]

=E
[

inf
∆∈R(t)

sup
u∈Sn−1

Zu,∆

]
≥ b
√
n

2
−C6(2

√
r+ 3

√
logd)t.

It’s easy to show that the function f(Ā) := inf∆∈R(t) ‖Ā(TΣ(∆U∗T +U∗∆T +∆∆T ))‖ is b-Lipschitz. Then,

applying Lemma 7 shows that

P

(
sup

∆∈R(t)

(
5b

8
− ‖A(∆U∗T +U∗∆T + ∆∆T )‖√

n
)≥ 3b

2
g(t)

)
≤ exp

(
−ng(t)2

8

)
,

where g(t) = 1
8

+
C6(2

√
r+3
√

log d)t

b
√
n

. By a peeling argument (see, e.g., Lemma 3 in Raskutti et al. 2010), we

can derive that

‖A(∆U∗T +U∗∆T + ∆∆T )‖√
n

≥ b

4
− 3C6(2

√
r+ 3

√
logd)

2
√
n

‖∆‖2,1

for any ∆ ∈ {∆ | ‖TΣ(∆U∗T +U∗∆T + ∆∆T )‖F = b} with probability greater than 1− c exp(−c′n) for some

positive constants c, c′. �

Proof of Proposition 3 Our proof strategy is adapted from the proof of Lemma 14 in Klopp (2014) and

Theorem 1 in Negahban and Wainwright (2012).

Consider the following set

R(t) = {∆ | ‖∆U∗T +U∗∆T + ∆∆T‖∞ = b,
‖∆U∗T +U∗∆T + ∆∆T‖∞
‖∆U∗T +U∗∆T + ∆∆T‖L2(Π)

≤B,‖∆‖2,1 ≤ t}

for any given b > 0. Let

Zt = sup
∆∈R(t)

| 1
n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2−‖∆U∗T +U∗∆T + ∆∆T‖2L2(Π)|.

Note that Ai’s are basis matrices with only one entry being 1 and others 0; thus,

|〈Ai,∆U∗T +U∗∆T + ∆∆T 〉2−‖∆U∗T +U∗∆T + ∆∆T‖2L2(Π)| ≤ 2b2.

for all i ∈ [N ] and any ∆ ∈ R(t). Then, we can use Massart’s concentration inequality (see, e.g., Theorem

14.2 in Bühlmann and Van De Geer 2011) to obtain

P(Zt ≥E[Zt] + 2b2χ)≤ exp

(
−nχ

2

8

)
(12)
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for any χ> 0. Next, we bound the expectation E[Zt]. Using a standard symmetrization argument (see, e.g.,

Theorem 2.1 in Koltchinskii 2011), we have

E[Zt]≤ 2E

 sup
∆∈R(t)

| 1
n

∑
i∈[n]

ζi〈Ai,∆U∗T +U∗∆T + ∆∆T 〉2|

 ,
where ζi’s are i.i.d. Rademacher random variables. Since |〈Ai,∆U∗T +U∗∆T + ∆∆T 〉| ≤ b for any ∆∈R(t),

using the contraction inequality (see, e.g., Koltchinskii 2011) gives

E[Zt]≤ 8bE[ sup
∆∈R(t)

|〈G,∆U∗T +U∗∆T + ∆∆T 〉|]

where G= 1
n

∑
i∈[n] ζiAi. Now we decompose the term on the right as follows,

|〈G,∆U∗T +U∗∆T + ∆∆T 〉|= |〈GU∗,∆〉+ 〈GTU∗,∆〉+ 〈G,∆∆T 〉|

≤ (‖GU∗‖2,∞+ ‖GTU∗‖2,∞+ L̄|G|∞)‖∆‖2,1,

where we use ‖∆‖2,1 ≤ L̄. Note that each entry (j, k) of the matrix G is G(j,k) = 1
n

∑
i∈[n] ζiA

(j,k)
i , where

ζiA
(j,k)
i has mean 0, variance µ2/d

2, and upper bound 1. Therefore, using the Bernstein inequality yields

P(|G(j,k)| ≥ χ)≤ 2 exp

(
− nχ2

2µ2

d2 + 2χ
3

)
.

With a union bound, we further have

P(‖G‖∞ ≥ χ)≤ 2d2 exp

(
− nχ2

2µ2

d2 + 2χ
3

)
.

Then, using the proof strategy of Lemma 6 in Klopp (2014), it follows that

E[‖G‖∞]≤ (E[‖G‖2 log d
∞ ])1/(2 log d) ≤ 11

(√
2µ2 logd

nd2
+

4 logd

3n

)
.

Moreover, each row j of GU∗ is G(j,·)U∗ = 1
n

∑
i∈[n] ζiA

(j,·)
i U∗, where ζiA

(j,·)
i U∗ has mean 0, `2-norm upper

bound σ1(U∗), and

max

‖ 1

n

∑
i∈[n]

E[A
(j,·)
i U∗U∗TA

(j,·)T
i ]‖,‖ 1

n

∑
i∈[n]

E[U∗TA
(j,·)T
i A

(j,·)
i U∗]‖

≤ rµ2σ
2
1(U∗)

d2
.

Therefore, using the matrix Bernstein inequality (see Lemma 11) and a union bound, we have

P(‖GU∗‖2,∞ ≥ x)≤ 2d2 exp

(
−nx2

2rµ2σ
2
1(U∗)

d2 + 2σ1(U∗)x
3

)
.

Again using the proof strategy of Lemma 6 in Klopp (2014), we have

E[‖GU∗‖2,∞]≤ 11σ1(U∗)

(√
4rµ2 logd

nd2
+

8 logd

3n

)
.

Similarly, we can get a same upper bound of E[‖GTU∗‖2,∞]. Combining all the above, we have

E[Zt]≤C7b

(√
logd

nd2
+

logd

n

)
t,
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where C̃7 = 88(L̄(
√

2µ2 + 4/3) + 2σ1(U∗)(
√

4rµ2 + 8/3)). Plugging it into (12) and setting χ= g(t) = 1
10B2 +

C̃7(
√

logd

nd2 + logd
n

)t

b
, we derive that

P(Zt ≥−
b2

10B2
+ 3b2g(t))≤ exp

(
−ng(t)2

8

)
.

Again, using the peeling argument (see, e.g., Lemma 3 in Raskutti et al. 2010), it yields that

1

n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2 ≥ ‖∆U∗T +U∗∆T + ∆∆T‖2L2(Π)−

1

2
b2− 6bC̃7

(√
logd

nd2
+

logd

n

)
‖∆‖2,1,

for any ∆ ∈ {∆ | ‖∆U∗T +U∗∆T + ∆∆T‖∞ = b, ‖∆U∗T +U∗∆T +∆∆T ‖∞
‖∆U∗T +U∗∆T +∆∆T ‖L2(Π)

≤B} with probability greater than

1− c exp(− c′

B4n) for some positive constants c, c′. Thus, it implies that

1

n
‖A(∆U∗T +U∗∆T + ∆∆T )‖2 ≥ 1

2
‖∆U∗T +U∗∆T + ∆∆T‖2L2(Π)

− 6C7

(√
logd

nd2
+

logd

n

)
‖∆U∗T +U∗∆T + ∆∆T‖L2(Π)‖∆‖2,1,

for any ∆∈ {∆ | ‖∆U∗T +U∗∆T +∆∆T ‖∞
‖∆U∗T +U∗∆T +∆∆T ‖L2(Π)

≤B}, where C7 =BC̃7.

Note that when πj,k ≥ µ1/d
2 for any j, k ∈ [d], it holds that µ1

d2 ‖∆U∗T + U∗∆T + ∆∆T‖2F ≤ ‖∆U∗T +

U∗∆T + ∆∆T‖2L2(Π). Our result then follows by using the inequality a2 + b2 ≥ 2ab. �

Appendix B: Error Bound of Transfer Learning Estimator

Lemma 1. Assume Ap satisfies 2r-RWC(αp, βp), and Ag satisfies the quadratic compatibility condition.

Let Alkg =
[
A

(l,k)
g,1 · · · A(l,k)

g,ng

]T
. Define Ψj ,Φj ∈Rr×r to be

Ψj =U∗Tg
AjTg A

j
g

ng
U∗g , Φj =U∗Tg

(ATjg )TATjg
ng

U∗g ,

where Ajg,A
Tj
g ∈Rng×d are matrices that stacks up the jth rows of Ag,i and ATg,i, i∈ [ng] respectively, i.e.,

Ajg =


A

(j,·)
g,1

A
(j,·)
g,2

...
A(j,·)
g,ng

 , ATjg =


A
T (j,·)
g,1

A
T (j,·)
g,2

...
AT (j,·)
g,ng

 .
Then, our two-stage transfer learning estimator satisfies with any chosen values of λ> 0 and c > 0

‖ÛTL
g −U∗g ‖2,1 ≥ 16(

λs

κ
+

4
√
dc

σr(U∗p )(3αp− 2βp)
)

with probability at most

2(36
√

2)2r(2d+1) exp(−
L2σ2

r (U∗p )(3αp− 2βp)
2np

512βpσ2
pd

)

+ 2d2 exp

(
− λ2ng

2048L2σ2
g (maxl,k ‖Alkg ‖2/ng)

)

+ dmax
j∈[d]

exp

−(

√√√√ λ2ng

256σ2
g
− (tr(Ψj)−

‖Ψj‖2F
2‖Ψj‖

)

2‖Ψj‖
− ‖Ψj‖F

2‖Ψj‖
)2


+ dmax

j∈[d]
exp

−(

√√√√ λ2ng

256σ2
g
− (tr(Φj)−

‖Φj‖2F
2‖Φj‖

)

2‖Φj‖
− ‖Φj‖F

2‖Φj‖
)2


+ 2(36

√
2)2r(2d+1) exp(− c2np

8βpσ2
p

).
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Proof of Lemma 1 As problem (4) is equivalent to problem (3), we analyze problem (4) for simplicity.

Note that the row sparsity is immune to rotations, that is, for any orthogonal matrix R, ∆∗UR is still row

sparse. After our first step of finding the proxy estimator, we align Ûp with U∗p in the direction of R(Ûp,U∗p ).

By our definition,

U∗gR(Ûp,U∗p ) =U∗pR(Ûp,U∗p ) + ∆∗UR(Ûp,U∗p ).

Through our previous analyses, Ûp is close to U∗pR(Ûp,U∗p ) with a high probability. Therefore, in our second

step, we aim to find an estimator ∆̂U for ∆∗UR(Ûp,U∗p ) through `2,1 penalty. For simplicity, we use U∗g , U∗p and

∆∗U to represent U∗gR(Ûp,U∗p ), U
∗
pR(Ûp,U∗p ) and ∆∗UR(Ûp,U∗p ) respectively in the following analyses, which are

aligned in the direction of R(Ûp,U∗p ). Define the first-stage estimation error ν = Ûp −U∗p and ∆̃U = ∆∗U − ν.

Thus, U∗g =U∗p + ∆∗U = Ûp + ∆̃U . Since Ûp carries the estimation error from the first step, the parameter we

actually want to recover is ∆̃U , which is approximately row sparse when the proxy data is huge. We define

the adjoint of an operator A : Rd×d→Rn to be A∗ : Rn→Rd×d, with A∗(ε) =
∑n

i=1 εiAi.

As we search within ‖∆U‖2,1 ≤ 2L and ‖∆∗U‖2,1 ≤L, we require the following event to hold

I = {‖ν‖2,1 ≤L} (13)

for ∆̃U to be feasible. Using a similar analysis to Theorem 3, we can show the event I takes place with a

high probability

P(I)≥ 1− 2(36
√

2)2r(2d+1) exp

(
−
L2σ2

r (U∗p )(3αp− 2βp)
2np

512βσ2
pd

)
on the event I, the global optimality of ∆̂U implies

1

ng
‖Xg −Ag((Ûp + ∆̂U)(Ûp + ∆̂U)T )‖2 +λ‖∆̂U‖2,1 ≤

1

ng
‖Xg −Ag((Ûp + ∆̃U)(Ûp + ∆̃U)T )‖2 +λ‖∆̃U‖2,1.

Plugging in Xg =Ag((Ûp + ∆̃U)(Ûp + ∆̃U)T ) + εg yields

1

ng
‖Ag((Ûp + ∆̂U)(Ûp + ∆̂U)T − (Ûp + ∆̃U)(Ûp + ∆̃U)T )‖2 +λ‖∆̂U‖2,1

≤ 2

ng
〈εg,Ag((Ûp + ∆̂U)(Ûp + ∆̂U)T − (Ûp + ∆̃U)(Ûp + ∆̃U)T )〉+λ‖∆̃U‖2,1.

Rearranging the RHS with U∗g = Ûp + ∆̃U , we get

1

ng
‖Ag((Ûp + ∆̂U)(Ûp + ∆̂U)T − (Ûp + ∆̃U)(Ûp + ∆̃U)T )‖2 +λ‖∆̂U‖2,1

≤ 2

ng
〈εg,Ag((∆̂U − ∆̃U)U∗Tg +U∗g (∆̂U − ∆̃U)T + (∆̂U − ∆̃U)(∆̂U − ∆̃U)T )〉+λ‖∆̃U‖2,1 (14)

The first part of the first term on the RHS of inequality (14) has

〈εg,Ag((∆̂U − ∆̃U)U∗Tg +U∗g (∆̂U − ∆̃U)T )〉=〈A∗g(εg), (∆̂U − ∆̃U)U∗Tg +U∗g (∆̂U − ∆̃U)T 〉

=〈A∗g(εg)U∗g , ∆̂U − ∆̃U〉+ 〈A∗g(εg)TU∗g , ∆̂U − ∆̃U〉

≤(max
j∈[d]
‖(A∗g(εg)jU∗g ‖+ max

j∈[d]
‖A∗g(εg)TjU∗g ‖)‖∆̂U − ∆̃U‖2,1.
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Correspondingly, the second part of the first term on the RHS of inequality (14) has

〈εg,Ag((∆̂U − ∆̃U)(∆̂U − ∆̃U)T )〉=〈A∗g(εg), (∆̂U − ∆̃U)(∆̂U − ∆̃U)T 〉

≤|A∗g(εg)|∞|(∆̂U − ∆̃U)(∆̂U − ∆̃U)T |1

≤|A∗g(εg)|∞‖∆̂U − ∆̃U‖22,1. (15)

Next, consider the following events

G1 =

{
2

ng
max
j∈[d]
‖A∗g(εg)jU∗g ‖ ≤

λ

8

}
, G2 =

{
2

ng
max
j∈[d]
‖A∗g(εg)TjU∗g ‖ ≤

λ

8

}
,

and

F =

{
2

ng
|A∗g(εg)|∞ ≤

λ

16L

}
,

which we prove holds with high probability in Lemma 2 after this lemma. On the events G1, G2 and F , we

derive from inequality (14) that

1

ng
‖Ag((Ûp + ∆̂U)(Ûp + ∆̂U)T − (Ûp + ∆̃U)(Ûp + ∆̃U)T )‖2 +λ‖∆̂U‖2,1

≤ λ

4
‖∆̂U − ∆̃U‖2,1 +

λ

16L
‖∆̂U − ∆̃U‖22,1 +λ‖∆̃U‖2,1

≤ λ

2
‖∆̂U − ∆̃U‖2,1 +λ‖∆̃U‖2,1.

The second inequality uses

‖∆̂U − ∆̃U‖2,1 ≤ 4L,

which is derived from the definition of the search region ‖∆U‖2,1 ≤ 2L, the definition of event I, and the

feasibility of ∆∗U that ‖∆∗U‖2,1 ≤L. We can further arrange the inequality to get

1

ng
‖Ag((Ûp + ∆̂U)(Ûp + ∆̂U)T − (Ûp + ∆̃U)(Ûp + ∆̃U)T )‖2 +

λ

2

∑
j∈Jc

‖(∆̂U − ∆̃U)j‖

≤ 3λ

2

∑
j∈J

‖(∆̂U − ∆̃U)j‖+ 2λ
∑
j∈Jc

‖νj‖. (16)

Now consider the following two cases respectively:

(i).
∑

j∈Jc ‖νj‖ ≤
∑

j∈J ‖(∆̂U − ∆̃U)j‖,

(ii).
∑

j∈Jc ‖νj‖>
∑

j∈J ‖(∆̂U − ∆̃U)j‖.

Under Case (i), we derive from the inequality (16) that

1

ng
‖Ag((Ûp+∆̂U)(Ûp+∆̂U)T − (Ûp+∆̃U)(Ûp+∆̃U)T )‖2 +

λ

2

∑
j∈Jc

‖(∆̂U − ∆̃U)j‖ ≤ 7λ

2

∑
j∈J

‖(∆̂U − ∆̃U)j‖.

Thus, we have
∑

j∈Jc ‖(∆̂U − ∆̃U)j‖ ≤ 7
∑

j∈J ‖(∆̂U − ∆̃U)j‖ and Ag satisfies QCC. Further write the above

as

1

ng
‖Ag((Ûp+∆̂U)(Ûp+∆̂U)T−(Ûp+∆̃U)(Ûp+∆̃U)T )‖2 +

λ

2
‖∆̂U−∆̃U‖2,1 ≤

8λ2s

κ
+
κ

2s
(
∑
j∈J

‖(∆̂U−∆̃U)j‖)2,
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where we use the inequality 2ab≤ a2 + b2. Apply QCC to the RHS, and

1

2ng
‖Ag((Ûp + ∆̂U)(Ûp + ∆̂U)T − (Ûp + ∆̃U)(Ûp + ∆̃U)T )‖2 +

λ

2
‖∆̂U − ∆̃U‖2,1 ≤

8λ2s

κ

Under Case (ii), the inequality (16) gives

1

ng
‖A((Ûp + ∆̂U)(Ûp + ∆̂U)T − (Ûp + ∆̃U)(Ûp + ∆̃U)T )‖2 +

λ

2
‖∆̂U − ∆̃U‖2,1 ≤ 4λ

∑
j∈Jc

‖νj‖.

Therefore, under any circumstances, we have

‖∆̂U − ∆̃U‖2,1 ≤ 8(
2λs

κ
+
∑
j∈Jc

‖νj‖)≤ 8(
2λs

κ
+ ‖ν‖2,1).

Consider the event

J =

{
‖ν‖2,1 ≤

8
√
dc

(3αp− 2βp)σr(U∗p )

}
. (17)

Using a similar analysis to Theorem 3 as our analysis on event I, we have

P(J )≥ 1− 2(36
√

2)2r(2d+1) exp(− c2np
8βpσ2

p

).

Therefore, on the event J , the estimation error is bounded by

‖∆̂U − ∆̃U‖2,1 ≤ 16(
λs

κ
+

4
√
dc

(3αp− 2βp)σr(U∗p )
).

Combining all the above and using Lemma 2, we have the following concentration inequality

P

(
‖∆̂U − ∆̃U‖2,1 ≥ 16(

λs

κ
+

4
√
dc

(3αp− 2βp)σr(U∗p )
)

)
≤ P(Ic) +P(Fc) +P(Gc1) +P(Gc2) +P(J c)

≤ 2(36
√

2)2r(2d+1) exp(−
L2σ2

r (U∗p )(3αp− 2βp)
2np

512βpσ2
pd

)

+ 2d2 exp

(
− λ2ng

2048L2σ2
g (maxl,k ‖Alkg ‖2/ng)

)

+ dmax
j∈[d]

exp

−(

√√√√ λ2ng

256σ2
g
− (tr(Ψj)−

‖Ψj‖2F
2‖Ψj‖

)

2‖Ψj‖
− ‖Ψj‖F

2‖Ψj‖
)2


+ dmax

j∈[d]
exp

−(

√√√√ λ2ng

256σ2
g
− (tr(Φj)−

‖Φj‖2F
2‖Φj‖

)

2‖Φj‖
− ‖Φj‖F

2‖Φj‖
)2


+ 2(36

√
2)2r(2d+1) exp(− c2np

8βpσ2
p

). � (18)

Lemma 2. The events G1, G2 and F satisfy the following concentration inequalities

P(Gc1)≤ dmax
j∈[d]

exp

−(

√√√√ λ2ng

256σ2
g
− (tr(Ψj)−

‖Ψj‖2F
2‖Ψj‖

)

2‖Ψj‖
− ‖Ψj‖F

2‖Ψj‖
)2

 ,



39

P(Gc2)≤ dmax
j∈[d]

exp

−(

√√√√ λ2n2
g

256σ2
g
− (tr(Φj)−

‖Φj‖2F
2‖Φj‖

)

2‖Φj‖
− ‖Φj‖F

2‖Φj‖
)2

 ,

and

P(Fc)≤ 2d2 exp

(
− λ2ng

2048L2σ2
g (maxl,k ‖Alkg ‖2/ng)

)
.

Proof of Lemma 2 Consider the event F first. With εg being σg-subgaussian,

P(Fc) = P(
2

ng
|A∗g(εg)|∞ ≥

λ

16L
)

≤ d2 max
l,k∈[d]

P(
2

ng
|
ng∑
i=1

A
(l,k)
g,i εg,i| ≥

λ

16L
)

≤ 2d2 exp

(
− λ2ng

2048L2σ2
g (maxl,k ‖Alkg ‖2/ng)

)
,

In the last inequality, we use the fact that εg is σg-subgaussian in the final inequality.

Next, we look at the event G1.

P(Gc1) = P(
2

ng
max
j∈[d]
‖A∗g(εg)jU∗g ‖ ≥

λ

8
)≤ dmax

j∈[d]
P(

2

ng
‖A∗g(εg)jU∗g ‖ ≥

λ

8
).

For a given j, observe that

4

n2
g

‖A∗g(εg)jU∗g ‖2 =
4

n2
g

‖
ng∑
i=1

Ajg,iU
∗
g εg,i‖2 =

4

ng
εTg
AjgU

∗
gU
∗T
g AjTg

ng
εg,

Note that Ψj has the same positive eigenvalues as
Aj

gU
∗
gU
∗T
g AjT

g

ng
. Different from Lounici et al. (2011), we

assume subgaussian random noises instead of gaussian noises. Therefore, instead, we have from Lemma 6

P(
4

ng
εTg
AjgU

∗
gU
∗T
g AjTg

ng
εg ≥

λ2

64
)≤ exp

−(

√√√√ λ2ng

256σ2
g
− (tr(Ψj)−

‖Ψj‖2F
2‖Ψj‖

)

2‖Ψj‖
− ‖Ψj‖F

2‖Ψj‖
)2

 .

Combining the results above, we can derive that

P(Gc1)≤ dmax
j∈[d]

exp

−(

√√√√ λ2ng

256σ2
g
− (tr(Ψj)−

‖Ψj‖2F
2‖Ψj‖

)

2‖Ψj‖
− ‖Ψj‖F

2‖Ψj‖
)2

 .

Similarly for event G2, we have

P(Gc2)≤ dmax
j∈[d]

exp

−(

√√√√ λ2n2
g

256σ2
g
− (tr(Φj)−

‖Φj‖2F
2‖Φj‖

)

2‖Φj‖
− ‖Φj‖F

2‖Φj‖
)2

 . �

Proof of Theorem 1 Theorem 1 follows Lemma 1. Suppose
Lσr(U∗p )(3αp−2βp)

8
√
d

≥ c. On this event, the first

term on the RHS of inequality (18) is smaller than the last term on the RHS. In order to make each term

on the RHS to be smaller than δ
5
, we require

λ≥max

{√
2048L2σ2

g (maxl,k ‖Alkg ‖2/ng)
ng

log(
10d2

δ
),

max
j∈[d]

√
256σ2

g

ng
(tr(Ψj) + 2‖Ψj‖F

√
log(

5d

δ
) + 2‖Ψj‖ log(

5d

δ
)),

max
j∈[d]

√
256σ2

g

ng
(tr(Φj) + 2‖Φj‖F

√
log(

5d

δ
) + 2‖Φj‖ log(

5d

δ
))

 ,
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and let c take the value

c=

√
8βpσ2

p

np
(2r(2d+ 1) log(36

√
2) + log(

10

δ
)).

Note that by definition of 1-smoothness(βg)

1

ng
‖Alkg ‖2 = 〈Elk,

1

ng
A∗g(Ag(Elk))〉 ≤ βg,

where Elk ∈Rd×d is a basis matrix whose (l, k) entry is 1 and otherwise 0. On the other hand,

‖Ψj‖= max
‖x‖=1,x∈Rr

xTU∗Tg
AjTg A

j
g

ng
U∗g x= max

‖x‖=1
xTU∗Tg

AjTg A
j
g

ng
U∗g x.

If we define a matrix Ej(x) whose jth row is xT and otherwise 0, then

‖Ψj‖= max
‖x‖=1

1

ng
〈Ej(U∗g x),A∗g(Ag(Ej(U

∗
g x)))〉.

As ‖x‖= 1, we have

‖Ej(U∗g x)‖F = ‖U∗g x‖ ≤ σ1(U∗g ).

Therefore, we have

‖Ψj‖ ≤ max
‖R‖F≤σ1(U∗g )

1

ng
〈R,A∗g(Ag(R)〉 ≤ βgσ2

1(U∗g ).

With a similar analysis, we have

‖Φj‖ ≤ βgσ2
1(U∗g ).

Given the above results, we can bound the trace and Frobenius norm of Ψj and Φj proportional to their

rank:

tr(Ψj)≤ r‖Ψj‖ ≤ rβgσ2
1(U∗g ), ‖Ψj‖F ≤

√
r‖Ψj‖ ≤

√
rβgσ

2
1(U∗g )

tr(Φj)≤ rβgσ2
1(U∗g ), ‖Φj‖F ≤

√
rβgσ

2
1(U∗g ).

Combining all the above results, we can instead set λ as:

λ= max

{√
2048L2βgσ2

g

ng
log(

10d2

δ
),√

256βgσ2
gσ

2
1(U∗g )

ng
(r+ 2

√
r log(

5d

δ
) + 2 log(

5d

δ
))

 .

Therefore, with the above choice of λ and with np and d such that√
8βpσ2

p

np
(2r(2d+ 1) log(36

√
2) + log(

10

δ
))≤

Lσr(U
∗
p )(3αp− 2βp)

8
√
d

,

we obtain the following bound for estimation error of ∆̃U :

‖∆̂U − ∆̃U‖2,1 =O

√σ2
gs

2(r+ log( d
2

δ
))

ng
+

√
σ2
p(rd2 + d log( 1

δ
))

np

 ,

with probability greater than 1− δ. Consequently,

`(ÛTL
g ,U∗g ) =O

√σ2
gs

2(r+ log( d
2

δ
))

ng
+

√
σ2
p(rd2 + d log( 1

δ
))

np

 ,

with probability at least 1− δ. �
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Appendix C: Local Minima

Proof of Proposition 4 By definition,

EXg|Ag
[〈∇f(∆̃U + ∆)−∇f(∆̃U),∆〉] =

2

ng
Ag(∆U∗Tg +U∗g∆T + ∆∆T )TAg(∆U∗Tg +U∗g∆T + 2∆∆T ).

As Ag satisfies RSC(
√

2
3
U∗g , η, τ),

2

ng
Ag(∆U∗Tg +U∗g∆T + ∆∆T )TAg(∆U∗Tg +U∗g∆T + 2∆∆T )

=
2

ng
(‖Ag(∆U∗Tg +U∗g∆T +

3

2
∆∆T )‖2− 1

4
‖Ag(∆∆T )‖2)

≥2η‖∆U∗Tg +U∗g∆T +
3

2
∆∆T‖2F −

βg
2
‖∆∆T‖2F −

3

2
τ(n,d, r)‖∆‖22,1.

The first two terms of the above have

2η‖∆U∗Tg +U∗g∆T +
3

2
∆∆T‖2F −

βg
2
‖∆∆T‖2F

≥8η‖∆U∗Tg ‖2F − 12η〈∆U∗Tg ,∆∆T 〉+ 9η

2
‖∆∆T‖2F −

βg
2
‖∆∆T‖2F

≥8η‖∆U∗Tg ‖2F − 12η sup
∆

‖∆∆T‖F
‖∆U∗Tg ‖F

‖∆U∗Tg ‖2F +
9η

2
‖∆∆T‖2F −

βg
2
‖∆∆T‖2F .

When ρ≤ σr(U∗g )/3, it holds that

sup
∆

‖∆∆T‖F
‖∆U∗Tg ‖F

≤ ‖∆‖F
σr(U∗g )

≤ 1

3
.

Therefore, we can lower bound the first two terms with

2η‖∆U∗Tg +U∗g∆T +
3

2
∆∆T‖2F −

βg
2
‖∆∆T‖2F ≥ 4η‖∆U∗Tg ‖2F ,

where we use the assumption that 9η≥ βg. Combining all of the above results gives rise to our first statement.

On the other hand, when ‖∆‖F ≤ ρ,

EXg|Ag
[〈∇f(∆̃U + ∆)−∇f(∆̃U),∆〉] =

2

ng
(‖Ag(∆U∗Tg +U∗g∆T +

3

2
∆∆T )‖2− 1

4
‖Ag(∆∆T )‖2)

≥ η1‖∆‖2F − τ1(ng, d, r)‖∆‖22,1.

Therefore, we have

2

ng
‖Ag(∆U∗Tg +U∗g∆T +

3

2
∆∆T )‖2 ≥ η1‖∆‖2F − τ1(ng, d, r)‖∆‖22,1.

Note that

‖∆U∗Tg +U∗g∆T +
3

2
∆∆T‖2F =‖∆U∗Tg +U∗g∆T‖2F + ‖3

2
∆∆T‖2F + 6〈U∗g∆T ,∆∆T 〉

=4‖∆U∗Tg ‖2F + ‖3

2
∆∆T‖2F + 6〈U∗g∆T ,∆∆T 〉

≤4‖∆U∗Tg ‖2F + ‖3

2
∆∆T‖2F + 6‖U∗g∆T‖F‖∆∆T‖F

≤4σ1(U∗g )2‖∆‖2F +
9ρ2

4
‖∆‖2F + 6σ1(U∗g )ρ‖∆‖2F

=(2σ1(U∗g ) +
3ρ

2
)2‖∆‖2F .

Therefore, Ag satisfies RSC(
√

2
3
U∗g , η, τ) with η= η1

2(2σ1(U∗g )+3ρ/2)2 and τ = τ1/3. �
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Proof of Theorem 2 Let ∆ = ∆̂U − ∆̃U . We first show that the local minima fall within ‖∆‖F ≤ ρ with

high probability. If ‖∆‖F ≥ ρ, condition (6b) gives

EXg|Ag
[〈∇f(∆̂U)−∇f(∆̃U),∆〉] = 〈∇f(∆̂U)−∇f(∆̃U),∆〉+ 4

ng
εTgAg(∆∆T )

≥ η2‖∆‖F − τ2(ng, d, r)‖∆‖2,1. (19)

As ∆̂U is a local minimum, a necessary condition of the optimization problem is

〈∇f(∆̂U) +λ∂‖∆̂U‖2,1,∆U − ∆̂U〉 ≥ 0, (20)

for any ∆U within the search area. ∂‖∆̂U‖2,1 is the subgradient of the `2,1 norm at ∆̂U , i.e.,

∂‖X‖2,1

{
=∇‖X‖2,1, ‖Xj‖> 0,∀j ∈ [d]

∈ {Z | ‖Z‖2,∞ ≤ 1}, otherwise.

The combination of (19) and (20) implies

〈−∇f(∆̃U)−λ∂‖∆̂U‖2,1,∆〉+
4

ng
εTgAg(∆∆T )≥ η2‖∆‖F − τ2(ng, d, r)‖∆‖2,1. (21)

Using Hölder’s inequality, we have

〈λ∂‖∆̂U‖2,1,∆〉 ≤ λ‖∂‖∆̂U‖2,1‖2,∞‖∆‖2,1 ≤ λ‖∆‖2,1,

where we use ‖∂‖∆̂U‖2,1‖2,∞ ≤ 1. Using the above result, replacing ∇f(∆̃U), and rearranging inequality (21)

give

η2‖∆‖F − τ2(

√
r

ng
+

√
logd

ng
)‖∆‖2,1 ≤

2

ng
〈εg,Ag(∆U∗Tg +U∗g∆T + 2∆∆T )〉+λ‖∆‖2,1.

Consider the same event of I in (13) and the following events

Ḡ1 =

{
2

ng
max
j∈[d]
‖A∗g(εg)jU∗g ‖ ≤

λ

16

}
, Ḡ2 =

{
2

ng
max
j∈[d]
‖A∗g(εg)TjU∗g ‖ ≤

λ

16

}
,

and

F̄ =

{
4

ng
|A∗g(εg)|∞ ≤

λ

32L

}
.

We know from Lemma 2 these events hold with high probability. On the event I, we further have ‖∆‖2,1 ≤ 4L.

Therefore, under all these events and assuming that λ≥ 4
3
τ2(ng, d, r), we have

η2‖∆‖F ≤ 2λ‖∆‖2,1 ≤ 8λL.

With λ≤ (ρη2)/(8L), we have ‖∆‖F ≤ ρ, which is a contradiction.

Consequently, we only need to consider ‖∆‖F ≤ ρ. Condition (6a) gives

〈∇f(∆̂U)−∇f(∆̃U), ∆̂U − ∆̃U〉+
4

ng
εTgAg(∆∆T )≥ η1‖∆‖2F − τ1(ng, d, r)‖∆‖22,1. (22)

Since the `2,1 norm is convex, we have for any ∆U

〈∂‖∆̂U‖2,1,∆U − ∆̂U〉 ≤ ‖∆U‖2,1−‖∆̂U‖2,1. (23)
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Combining inequalities (22), (20), and (23), we have

η1‖∆‖2F ≤
2

ng
〈εg,Ag(∆U∗Tg + U∗g∆T + 2∆∆T )〉 + λ(‖∆̃U‖2,1 − ‖∆̂U‖2,1) + 4Lτ1(ng, d, r)‖∆‖2,1,

where we use ‖∆‖2,1 ≤ 4L. Since λ≥ 16Lτ1(ng, d, r), we can derive that

η1‖∆‖2F ≤
λ

2
‖∆̃U − ∆̂U‖2,1 +λ(‖∆̃U‖2,1−‖∆̂U‖2,1),

on the events Ḡ1, Ḡ2 and F̄ . Further arrange the inequality and we have

η1‖∆̂U − ∆̃U‖2F +
λ

2

∑
j∈Jc

‖(∆̂U − ∆̃U)j‖ ≤ 3λ

2

∑
j∈J

‖(∆̂U − ∆̃U)j‖+ 2λ
∑
j∈Jc

‖νj‖. (24)

Inequality (24) gives us

‖∆̂U − ∆̃U‖F ≤max

3λ
√
s

η1

,

√
4λ
∑

j∈Jc ‖νj‖
η1

 ,

and

‖∆̂U − ∆̃U‖2,1 ≤ 4
√
s‖∆̂U − ∆̃U‖F + 4

∑
j∈Jc

‖νj‖,

which implies

‖∆̂U − ∆̃U‖2,1 ≤max

12λs

η1

+ 4
∑
j∈Jc

‖νj‖,8

√
λs
∑

j∈Jc ‖νj‖
η1

+ 4
∑
j∈Jc

‖νj‖

≤ 12λs

η1

+ 6
∑
j∈Jc

‖νj‖.

Under the same event J in equation (17), we have that

‖∆̂U − ∆̃U‖2,1 ≤ 12(
λs

η1

+
4
√
dc

(3αp− 2βp)σr(U∗p )
).

The final concentration inequality is as follows:

P

(
‖∆̂U − ∆̃U‖2,1 ≥ 12(

λs

η1

+
4
√
dc

(3αp− 2βp)σr(U∗p )
)

)
≤ P(Ic) +P(Ḡc1) +P(Ḡc2) +P(F̄c) +P(J c)

≤ 2(36
√

2)2r(2d+1) exp(−
L2σ2

r (U∗p )(3αp− 2βp)
2np

512βpσ2
pd

)

+ 2d2 exp

(
− λ2ng

32768L2σ2
g (maxl,k ‖Alkg ‖2/ng)

)

+ dmax
j∈[d]

exp

−(

√√√√ λ2ng

512σ2
g
− (tr(Ψj)−

‖Ψj‖2F
2‖Ψj‖

)

2‖Ψj‖
− ‖Ψj‖F

2‖Ψj‖
)2


+ dmax

j∈[d]
exp

−(

√√√√ λ2ng

512σ2
g
− (tr(Φj)−

‖Φj‖2F
2‖Φj‖

)

2‖Φj‖
− ‖Φj‖F

2‖Φj‖
)2


+ 2(36

√
2)2r(2d+1) exp(− c2np

8βpσ2
p

). (25)
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Following a similar analysis in the proof of Theorem 1, set λ as

λ= max


√

32768L2βgσ2
g

ng
log(

10d2

δ
),

√
512βgσ2

gσ
2
1(U∗g )

ng
(r+ 2

√
r log(

5d

δ
) + 2 log(

5d

δ
)),

4

3
τ2(ng, d, r),16Lτ1(ng, d, r)

}
,

and take

c=

√
8βpσ2

p

np
(2r(2d+ 1) log(36

√
2) + log(

10

δ
)).

Then, given √
8βpσ2

p

np
(2r(2d+ 1) log(36

√
2) + log(

10

δ
))≤

Lσr(U
∗
p )(3αp− 2βp)

8
√
d

,

we obtain statistical guarantees on all local minima

`(ÛTL
g ,U∗g ) =O

√σ2
gs

2(r+ log( d
2

δ
))

ng
+

√
σ2
p(rd2 + d log( 1

δ
))

np

 ,

with probability at least 1− δ. This provides us with a same bound as the global minimum. �

Appendix D: Error Bound of Gold Estimator

Before discussing the estimation error bound of the gold estimator, we first introduce a lemma that helps

with our proof.

Lemma 3. Let Z ⊂Rd×d be the subspace of matrices with rank at most r. The operator A is r-smooth(β)

in Z and ε is σ-subgaussian. Then, we have

P(sup
Z∈Z
| 1
n

∑
i∈[n]

εi〈Ai,Z〉| ≤ c‖Z‖F )≥ 1− 2(36
√

2)r(2d+1) exp

(
− c2n

8βσ2

)
.

Proof of Lemma 3 Without loss of generality, consider Z = {Z ∈Rd×d| rank(Z)≤ r,‖Z‖F = 1}. Define N

to be a 1
4
√

2
-net of Z. Lemma 4 gives the covering number for the set Z:

|N | ≤ (36
√

2)r(2d+1).

For any Z ∈Z, there exists Z ′ ∈N with ‖Z −Z ′‖F ≤ 1
4
√

2
, such that

|
∑
i∈[n]

εi〈Ai,Z〉| ≤ |
∑
i∈[n]

εi〈Ai,Z ′〉|+ |
∑
i∈[n]

εi〈Ai,Z −Z ′〉|. (26)

Set ∆Z = Z − Z ′ and note that rank(∆Z) ≤ 2r. We decompose ∆Z into two matrices, ∆Z = ∆Z,1 + ∆Z,2,

that satisfy rank(∆Z,j) ≤ r for j = 1,2 and 〈∆Z,1,∆Z,2〉 = 0 (e.g. through SVD). As ‖∆Z,1‖F + ‖∆Z,2‖F ≤
√

2‖∆Z‖F , we have ‖∆Z,j‖F ≤ 1
4
, j = 1,2. Combined with inequality (26), we have

|
∑
i∈[n]

εi〈Ai,Z〉| ≤ sup
Z′∈N

|
∑
i∈[n]

εi〈Ai,Z ′〉|+
1

2
sup
Z∈Z
|
∑
i∈[n]

εi〈Ai,Z〉|.

Since the above holds for any Z ∈Z, the following holds:

sup
Z∈Z
|
∑
i∈[n]

εi〈Ai,Z〉| ≤ 2 sup
Z′∈N

|
∑
i∈[n]

εi〈Ai,Z ′〉|.
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Then it follows from the union bound that

P(sup
Z∈Z
| 1
n

∑
i∈[n]

εi〈Ai,Z〉| ≥ c)≤ P(sup
Z∈N
| 1
n

∑
i∈[n]

εi〈Ai,Z〉| ≥
c

2
)

≤ |N |max
Z∈N

P(| 1
n

∑
i∈[n]

εi〈Ai,Z〉| ≥
c

2
)

≤ 2|N | exp

(
− c2n

8βσ2

)
= 2(36

√
2)r(2d+1) exp

(
− c2n

8βσ2

)
.

The last inequality uses r-smoothness(β) of A and a tail inequality of σ-subgaussian random variables. �

Proof of Theorem 3 The proof mainly follows Theorem 8 and Theorem 31 of Ge et al. (2017) but we

also provide here for completeness. As in Ge et al. (2017), we use the notation U :H : V to denote the inner

product 〈U,H(V )〉 for U,V ∈Rd1×d2 . The linear operator H can be viewed as a d1d2× d1d2 matrix. In our

problem (9), we define

Θ :H : Θ =
1

ng
‖Ag(Θ)‖2

for any Θ∈Rd×d. We can rewrite problem (9) as

min
Ug

f(Ug) =
1

ng
‖Xg −Ag(UgUT

g )‖2.

Rearrange the objective function with H and we have

f(Ug) = (UgU
T
g −Θ∗g) :H : (UgU

T
g −Θ∗g) +Q(Ug),

with

Q(Ug) =− 2

ng

∑
i∈[ng]

〈Ag,i,UgUT
g −Θ∗g〉εg,i +

1

ng

∑
i∈[ng]

ε2g,i.

Define ∆ = Ûg − U∗gR(Ûg,U∗g ). By Lemma 7 from Ge et al. (2017), we have for the Hessian ∇2f(Ûg) with

∇f(Ûg) = 0

∆ :∇2f(Ûg) : ∆ = 2∆∆T :H : ∆∆T − 6(Θ̂g −Θ∗g) :H : (Θ̂g −Θ∗g) + ∆ :∇2Q(Ûg) : ∆− 4〈∇Q(Ûg),∆〉.

Using Lemma 5 and the 2r-RWC assumption, the above inequality can be simplified as

∆ :∇2f(Ûg) : ∆≤−2(3αg − 2βg)‖Θ̂g −Θ∗g‖2F + ∆ :∇2Q(Ûg) : ∆− 4〈∇Q(Ûg),∆〉.

We then bound the terms related to function Q. Note that

∆ :∇2Q(Ûg) : ∆− 4〈∇Q(Ûg),∆〉=
4

ng

∑
i∈[ng]

〈Ag,i, Θ̂g −Θ∗g〉εg,i +
4

ng

∑
i∈[ng]

〈Ag,i, Ûg∆T −∆ÛT
g 〉εg,i

Define Z = {Z ∈Rd×d | rank(Z)≤ 2r}. On the event

Eg =

sup
Z∈Z
| 1

ng

∑
i∈[ng]

εg,i〈Ag,i,Z〉| ≤ c‖Z‖F

 ,
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it holds that

4

ng

∑
i∈[ng]

〈Ag,i, Θ̂g −Θ∗g〉εg,i ≤ 4c‖Θ̂g −Θ∗g‖F

4

ng

∑
i∈[ng]

〈Ag,i, Ûg∆T −∆ÛT
g 〉εg,i ≤ 4(1 +

√
2)c‖Θ̂g −Θ∗g‖F ,

where the second inequality uses Lemma 5. Therefore, we have

∆ :∇2f(Ûg) : ∆≤−2(3αg − 2βg)‖Θ̂g −Θ∗g‖2F + (8 + 4
√

2)c‖Θ̂g −Θ∗g‖F .

Since Ûg is a local minimum, we must have

−2(3αg − 2βg)‖Θ̂g −Θ∗g‖2F + (8 + 4
√

2)c‖Θ̂g −Θ∗g‖F ≥ 0,

that is, Θ̂g satisfies

‖Θ̂g −Θ∗g‖F ≤
(4 + 2

√
2)c

3αg − 2βg
.

Again using Lemma 5 gives

‖Ûg −U∗gR(Ûg,U∗g )‖F ≤
1√

2(
√

2− 1)σr(Θ∗g)
‖Θ̂g −Θ∗g‖F ≤

8c

(3αg − 2βg)σr(U∗g )
.

Further by Cauchy-Schwarz, we have

‖Ûg −U∗gR(Ûg,U∗g )‖2,1 ≤
8c
√
d

(3αg − 2βg)σr(U∗g )
.

Lemma 3 shows with high probability Eg holds:

P(Eg)≥ 1− 2(36
√

2)2r(2d+1) exp

(
− c2ng

8βgσ2
g

)
.

The result follows by taking

c=

√
8βgσ2

g (2r(2d+ 1) log(36
√

2) + log( 2
δ
))

ng
. �

Appendix E: Error Bound of Proxy Estimator

Proof of Theorem 4 Same as the proof of Theorem 3, we get

‖Ûp−U∗pR(Ûp,U∗p )‖2,1 ≤
8c
√
d

(3αp− 2βp)σr(U∗p )
.

On the event

Ep =

sup
Z∈Z
| 1

np

∑
i∈[np]

εp,i〈Ap,i,Z〉| ≤ c‖Z‖F

 .

To measure the estimation error of Ûp for U∗g , we need to align Ûp with U∗g . The estimation error of using

proxy estimator for gold data is

‖Ûp−U∗gR(Ûp,U∗g )‖2,1 =‖Ûp−U∗pR(Ûp,U∗p ) +U∗pR(Ûp,U∗p )− (U∗p + ∆∗U)R(Ûp,U∗g )‖2,1

≤‖Ûp−U∗pR(Ûp,U∗p )‖2,1 + ‖U∗p (R(Ûp,U∗p )−R(Ûp,U∗g ))‖2,1 + ‖∆∗U‖2,1.
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Therefore, we have

‖Ûp−U∗gR(Ûp,U∗g )‖2,1 ≤ ‖∆∗U‖+ ‖U∗p (R(Ûp,U∗p )−R(Ûp,U∗g ))‖2,1 +
8c
√
d

(3αp− 2βp)σr(U∗p )
.

By Lemma 3,

P(Ep)≥ 1− 2(36
√

2)2r(2d+1) exp

(
− c2np

8βpσ2
p

)
.

Similarly, the result follows by taking

ω= ‖U∗p (R(Ûp,U∗p )−R(Ûp,U∗g ))‖2,1,

and

c=

√
8βpσ2

p(2r(2d+ 1) log(36
√

2) + log( 2
δ
))

np
. �

Appendix F: Useful Lemmas

Lemma 4. Let Z = {Z ∈Rd1×d2 | rank(Z)≤ r,‖Z‖F = 1}. Then there exists an ε-net N ⊆Z with respect to

the Frobenius norm obeying

|N | ≤ (9/ε)(d1+d2+1)r.

Proof of Lemma 4 See Lemma 3.1 of Candes and Plan (2011). �

Lemma 5. Let ∆ = Û −U∗R(Û,U∗), Θ∗ =U∗U∗T and Θ̂ = Û ÛT , where R(Û,U∗) is defined in Definition 2.

Then,

‖∆∆T‖2F ≤ 2‖Θ̂−Θ∗‖2F

σr(Θ
∗)‖∆‖2F ≤

1

2(
√

2− 1)
‖Θ̂−Θ∗‖2F .

Proof of Lemma 5 See Lemma 6 of Ge et al. (2017). �

Lemma 6. Let X ∈Rn be a σ-subgaussian random vector, A∈Rm×n and Σ =ATA. Then, for any t > 0,

P(‖AX‖2 >σ2(tr(Σ) + 2‖Σ‖F
√
t+ 2‖Σ‖t))≤ exp(−t).

Proof of Lemma 6 See Theorem 1 of Hsu et al. (2012). �

Lemma 7. Let gaussian random vector X =
[
X1 · · · Xn

]T ∈ Rn with i.i.d. Xi ∼N(0,1), and f : Rn→ R

an L-Lipschitz function, i.e., |f(x)− f(y)| ≤L‖x− y‖ for any x, y ∈Rn. Then, for any t > 0

P(f(X)−E[f(X)]> t)≤ exp(− t2

2L2
).

Proof of Lemma 7 See Theorem 5.6 in Boucheron et al. (2013). �

Lemma 8. For gaussian random vector X =
[
X1 · · · Xn

]T ∈Rn with X ∼N(0,Σ), the demeaned ‖X‖ is

subgaussian, i.e., for any t > 0,

P(‖X‖−E[‖X‖]> t)≤ exp(− t2

2‖Σ‖
).

Proof of Lemma 8 It is a direct application of Lemma 7. �
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Lemma 9. For random variables Xi, i∈ [n] with Xi drawn from σi-subgaussian,

E[max
i∈[n]

Xi]≤max
i∈[n]

σi
√

2 logn, E[max
i∈[n]
|Xi|]≤max

i∈[n]
σi
√

2 log(2n).

Proof of Lemma 9 It is a simple extension of Theorem 1.14 of Rigollet (2015). �

Lemma 10. For Γ function and any integer n, we have

n√
n+ 1

≤
√

2
Γ(n+1

2
)

Γ(n
2
)
≤
√
n.

Proof of Lemma 10 It is easy to prove by induction. �

Lemma 11. Let Z1, · · · ,Zn be independent matrices in Rd1×d2 s.t. E[Zi] = 0 and ‖Zi‖ ≤D almost surely

for all i∈ [n]. Let σZ be such that

σ2
Z ≥max

‖ 1

n

∑
i∈[n]

E[ZTi Zi]‖,‖
1

n

∑
i∈[n]

E[ZiZ
T
i ]‖

 .

Then for any t > 0,

P(‖ 1

n

∑
i∈[n]

Zi‖ ≥ t)≤ (d1 + d2) exp(
−nt2

2σ2
Z + (2Dt)/3

).

Proof. This is a simple extension of Proposition 1 of Athey et al. (2021). �

Appendix G: Experimental Details

This section provides details on the setup of experiments described in §5 on both synthetic and real data.

G.1. Synthetic Data

Experimental Details. We consider a low-data regime where the gold and proxy sample sizes are ng = 50

and np = 5,000 respectively. The observation matrices Ap,i,Ag,i ∈ Rd×d are independent gaussian random

matrices whose entries are i.i.d. N(0,1). The parameter Θ∗p ∈ Rd×d is created by choosing U∗p ∈ Rd×r with

i.i.d. N(0,1) entries. Then, we generate Θ∗g by setting the row sparsity of ∆∗U to s, randomly picking s rows

our of d, and drawing the value of each entry from a uniform distribution Uniform[−1,1]. Additionally, we

sample noise terms εp,i, εg,i independently from a gaussian distribution N(0,1).

Cross Validation. We compute the gold, proxy, and transfer learning estimators by solving optimization

problems (9), (10), and (3), respectively. To construct the transfer learning estimator, we also need to pick

a proper value for the hyperparameter λ to balance bias and variance. Although we provide a theoretically

justified expression for λ in Theorem 1, this choice depends on problem-dependent parameters that are

typically not known in practice.

Rather, in practice, the hyperparameters are typically chosen using the popular cross-validation method

(Kohavi et al. 1995, Hastie et al. 2009); specifically, in the context of low-rank matrix factorization and

group-sparse regression, k-fold cross validation is typically used to tune hyperparameters (Huang and Zhang

2010, Chen et al. 2013, Cai et al. 2016). Here we use a 5-fold cross validation to tune λ on a pre-specified

grid. In particular, we split the full gold sample into 5 parts; for each of the 5 times, we use 4 parts (i.e., 80%

of the gold data) as the training set and calculate the Frobenius error on the remaining one part (i.e., 20% of

the gold data), which is the validation set. Note that our estimates of the embeddings U∗g are invariant under

an orthogonal change-of-basis (see discussion in §2.1), so we use the rotation-invariant Frobenius norm to

measure estimation error of Θ∗g. We pick the value of λ that gives the lowest average Frobenius error across

the 5 runs.



49

G.2. Wikipedia

Data Pre-processing. All the Wikipedia text data were downloaded from the English Wikipedia database

dumps6 in January 2020. We preprocess the text using a standard approach—i.e., splitting and tokenizing

sentences, removing short sentences that contain less than 20 characters or 5 tokens, and removing stop

words. We download the pre-trained word embeddings from GloVe’s official website.7 In our experiment, we

use the pre-trained vectors trained from the 2014 Wikipedia dump and Gigaword 5, which contains around

6 billion tokens and 400K vocabulary words.

Experimental Details. We implement our transfer learning method based on (3). Note that the goal of

our transfer learning approach is to efficiently use publicly available pre-trained word embeddings together

with domain textual data. Since it’s computationally costly to train pre-trained word embeddings based on

our method from the whole Wikipedia dump, we use the GloVe pre-trained word embedding as our proxy

estimator. Then, to extend our approach to the GloVe objective, we solve the optimization problem (8).

The Mittens word embeddings are obtained solving a similar problem as (8), but with the Frobenius norm

penalty—i.e.,

∑
i∈[d]

‖(Ui +Vi)− Û i
p‖2.

We follow the experimental setting of GloVe. We create the co-occurrence matrix using a symmetric context

window of length 5. We choose the dimension of the word embedding to be 100. We tune the hyperparameters

for all methods and take λ = 0.5 for our estimator, and λ = 0.05 for Mittens estimator and our estimator

adjusted to GloVe objective. We found our results to be robust to the choice of hyperparameter.

To identify domain-specific words for each article, we score each word i by the `2 distance between its new

embedding (e.g, our transfer learning estimator or Mittens) and its pre-trained embedding; a higher score

indicates a higher likelihood of being a domain-specific word. To evaluate the accuracy of domain-specific

word identification, we choose a threshold of 10%, and select and compare the top 10% of words according

to this score for each estimator. In other words, we treat all words in the top 10% as positives identified by

each estimator, and accordingly the rest 90% of the words are negatives identified by each estimator. Then,

we will be able to calculate an F1 score of each estimator for each article. To compare different estimators,

we target a domain-level F1 score, which is an average across article-level F1 scores normalized by article

length of articles within the corresponding domain.

Appendix H: Additional Experiments

This section details additional experiments to complement and extend the main experimental results in §5.

6 https://dumps.wikimedia.org/enwiki/latest/

7 https://nlp.stanford.edu/projects/glove/

https://dumps.wikimedia.org/enwiki/latest/
https://nlp.stanford.edu/projects/glove/


50

H.1. Synthetic Data

We conduct additional experiments to show how our estimator’s performance varies based on problem-specific

parameters, as well as to assess the robustness of performance with respect to the choice of hyperparameters.

The experimental results are shown in Figure 4 and 5. In these experiments, we inherit the setting (a) in

Figure 3 with d= 20, r= 5, and s= 2, except for Figure 5 (a) and (b) where we take d= 40, r= 5, and s= 2.

First, aligned with our theory, Figure 4 shows the estimation error declines with the gold sample size for

both the gold estimator and our transfer learning estimator. Note that the proxy estimator only depends

on the proxy sample size and hence its performance does not vary as a function of the gold sample size.

These results supports our theoretical finding that our estimator performs consistently better than other

benchmarks in the low-data regime where np � d2 and ng � d2 (in this example, np = 5,000 and d =

20). Intuitively, if the gold estimator has low estimation error, we can always set the hyperparameter λ

to be 0 so that our transfer learning estimator equals the gold estimator. Therefore, with flexibility in

tuning hyperparameters, our estimator should always weakly outperform the gold estimator in practice.

More interestingly, our results also suggest that our estimator performs relatively well even in the regime

with moderate gold sample size (in this example, when ng ≥ d2 = 400).
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Figure 4 Lines depict the Frobenius norm estimation errors averaged over 100 trials. The 95% confidence

intervals are too small to be observed and hence not shown. ‘TL’ denotes our transfer learning estimator.

Next, also consistent with our theory, we show that the estimation error of our estimator increases with

the group sparsity level s, the matrix rank r, and the magnitude of ∆∗U , i.e., L, (remember ‖∆∗U‖2,1 ≤ L).

Figure 5 (a) shows the estimation error of our method increases with the group sparsity level s. Intuitively,

when the gold and proxy tasks become more heterogeneous—e.g., a higher sparsity level implying that less

information can be shared—transfer learning becomes harder. Figure 5 (b) analyzes the performance of our

method with different values of matrix rank r. Intuitively, higher matrix rank r means more within-group

parameters to learn, and thus will increase the learning difficulty for all estimators. Figure 5 (c) shows our

estimation error for different values of L. Specifically, we draw the value of each entry of the s nonzero

rows of ∆∗U from a uniform distribution Uniform[−a,a]. Thus, L becomes larger when a takes larger values.

Again, this result shows that transfer learning becomes harder when the gold and proxy problems are more
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(a) Varying s
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(b) Varying r
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Figure 5 Lines depict the Frobenius norm estimation errors of our transfer learning estimator averaged over

100 trials, with error bars the corresponding 95% confidence intervals.

different. Note that when a takes smaller values, ∆∗U is easier to estimate, and the result here is consistent

with that in Figure 5 (a).

Lastly, we study the robustness of our estimator towards the hyperparameters. Figure 6 shows the Frobe-

nius norm estimation error of our transfer learning estimator with varying values of the hyperparameter λ,

compared with the benchmark errors of proxy and gold estimators. We find that the Frobenius error of our

method is not substantially affected by varying values of the hyperparameter; particularly, our method still

dominates the two other benchmarks consistently over different values of λ. This suggests that our algorithm

is robust, which is important especially in empirical applications where these hyperparameters might not be

well specified.
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Figure 6 Lines depict the Frobenius norm estimation errors averaged over 100 trials. The 95% confidence

intervals are too small to be observed and hence not shown. ‘TL’ denotes our transfer learning estimator.

H.2. Wikipedia

As discussed in the main text, we also compare our algorithm with two other benchmarks that combine

domain-specific word embeddings with pre-trained ones through Canonical Correlation Analysis (CCA) or the

closely related kernelized version KCCA (Sarma et al. 2018). In the following, without raising any ambiguity,

we will call these two benchmarks CCA and KCCA estimators. We show our approach outperforms these

two benchmarks as well.
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Specifically, the CCA estimator implements CCA to align the domain specific word embedding Ûg,i and

the pre-trained word embedding Ûp,i for each word i, transforming them to Ūg,i and Ūp,i respectively. The

final proposed CCA estimator (Sarma et al. 2018) is computed as 1
2
Ūg,i + 1

2
Ūp,i for each word i, i.e., the

average of the aligned domain-specific word embeddings and the pre-trained word embeddings. In contrast,

the KCCA estimator transforms the embeddings Ûg,i and Ûp,i for word i through a kernel CCA, instead of

CCA. We follow Sarma et al. (2018) setting the hyperparameter σ of the gaussian kernel to be the median of

pairwise distances between domain-specific word embeddings and pre-trained word embeddings. See Sarma

et al. (2018) for details of the implementations of both estimators.

As illustrated in Table H.1, our approach outperforms these two algorithms at the task of identifying

domain-specific words across different types of Wikipedia articles.

Domain TL Mittens CCA KCCA Random

Finance 0.2320 0.1829 0.1347 0.1633 0.1376
Math 0.2660 0.2175 0.2385 0.1690 0.1543
Computing 0.2527 0.1963 0.1980 0.2319 0.1430
Politics 0.1873 0.1571 0.0602 0.1373 0.0640

Table H.1 Average F1-score of domain word identification (weighted by article length) for four domains

respectively. “TL” represents our transfer learning approach.

In addition, we also evaluate how our transfer learning estimator performs when varying the value of

selection threshold, which determines the criteria for domain-specific words; in particular, we consider 10%,

20%, and 30% (note our main experimental result uses a threshold of 10%). Figure 7 shows the weighted

F1-score versus the top percentage set for the threshold in the finance domain. Our approach consistently

outperforms all baselines including CCA and KCCA over different selection thresholds, illustrating that it

is robust to how we define domain-specific words.
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Figure 7 Average F1 score (weighted by article length) versus top percentage of the rank set for the threshold

in the finance domain. “TL” represents our transfer learning approach.
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