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Online matching markets face increasing needs to accurately learn the matching qualities between demand

and supply for effective design of matching policies. However, the growing diversity of participants introduces

a high-dimensional challenge in practice, as there are a substantial number of unknown matching rewards

and learning all rewards requires a large amount of data. We leverage a natural low-rank matrix structure of

the matching rewards in these two-sided markets, and propose to utilize matrix completion (specifically the

nuclear norm regularization approach) to accelerate the reward learning process with only a small amount of

offline data. A key challenge in our setting is that the matrix entries are observed with matching interference,

distinct from the independent sampling assumed in existing matrix completion literature. We propose a new

proof technique and prove a near-optimal average accuracy guarantee with improved dependence on the

matrix dimensions. Furthermore, to guide matching decisions, we develop a novel “double-enhancement”

procedure that refines the nuclear norm regularized estimates and further provides near-optimal entry-wise

estimations. Our paper makes the first investigation into adopting matrix completion techniques for matching

problems. We also extend our approach to online learning settings for optimal matching and stable matching

by incorporating matrix completion in multi-armed bandit algorithms. We present improved regret bounds in

matrix dimensions through reduced costs during the exploration phase. Finally, we demonstrate the practical

value of our methods using both synthetic data and real data of labor markets.
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1. Introduction

Online matching markets have become increasingly essential to facilitate the matching efficiency

across many domains. For instance, freelance service platforms, such as Upwork and Taskrabbit,

provide new opportunities to help businesses secure temporary labor (Belavina et al. 2020); dating

apps, such as Tinder and Bumble, have become the most popular way for couples to meet (Rosenfeld

et al. 2019); ride-hailing companies, such as Uber and Lyft, thrive through bridging demand and

supply of transportation in a timely fashion (Yan et al. 2020); volunteer crowdsourcing platforms,
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such as Food Rescue US and Food Rescue Hero, rely on volunteers to deliver donated food from

local businesses (Lo et al. 2024). The majority of the matching markets, including all previous

examples, exhibit a two-sided structure, e.g., jobs and workers in the labor market, or riders and

drivers in the ride-hailing sector. For convenience, we will use the aforementioned online labor

marketplaces as our primary setting; thus, we denote the two sides of the market, i.e., the demand

side and supply side, as jobs and workers respectively.

While the matching literature typically focuses on designing matching policies given known

matching qualities between any types of jobs and workers, we consider the problem of learning

unknown matching qualities through noisy data. To illustrate, consider the following example of

one-to-one matching in a centralized online labor marketplace:

Example 1. Online labor platforms, such as Upwork and Taskrabbit, want to match each

unfilled job with an available worker. In such a case, the set of job and worker types makes up the

two sides of the online labor market. The design of any matching policies relies on accurate esti-

mates of the quality or reward of any match between each job and worker type from, e.g., ratings of

worker performance (Belavina et al. 2020) or certain quality measure of productivity (Kaynar and

Siddiq 2023). To that end, the platform tests any possible matches of jobs and workers of different

types over time, collects observable feedback of all matched pairs, and finally uses these data to

estimate the matching qualities. Then, the platform can decide how to match the two sides with

regard to the updated knowledge about matching qualities.

The increasing variety of both jobs and workers introduces significant challenges into learning the

matching market both practically and theoretically. The current literature on two-sided matching

typically assumes a small number of demand and supply types to ensure theoretical guarantees,

yet limited in model dimensionality and hence practicality (Chen et al. 2023). In practice, the

number of matching qualities to learn between job and worker types can be high-dimensional. For

example, Upwork has more than a hundred job categories according to their website description;

therefore, even tens of worker types will result in thousands of matching qualities to learn in such

an online labor platform. As a result, learning accurate matching qualities statistically requires a

large number of samples of matched pairs and their feedback. In other words, it can be very costly

to collect enough observations to learn all matching qualities until the downstream decision making

of matching can become precise.

In this paper, we propose to leverage the matrix structure of the matching market and speed up

the learning process of matching qualities using the technique of matrix completion (Candes and

Recht 2008, Candes and Plan 2010, Candès and Tao 2010). Note that the two-sided structure of

the matching market (see Figure 1a) naturally possesses the form of a matrix — i.e., the job and

worker types form the rows and columns of the matrix (see Figure 1b). For instance, in Figure
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1b, each row of the matrix denotes one worker type, and each column denotes one job type; the

value of each entry equals the unknown quality or reward of matching jobs and workers from the

corresponding types. Our goal is to learn every entry of a large reward matrix (as discussed in

the previous paragraph) using only a small number of observed noisy matching outcomes, which

is typically much less than the total number of matrix entries. Yet, this is hardly likely without

assuming some underlying structure of the reward matrix that relates different entries. Intuitively,

if the entries of the reward matrix are related, then the observed matching outcomes of one pair

of job and worker types can help learn the matching value of another pair.

(a) One-to-one Match (b) Matrix Representation

Figure 1 Toy example of one-to-one matching for 3 worker types and 4 job types. (a) presents one matching of

this labor market. (b) shows the matrix representation of the matching problem, where each entry denotes the

reward of matching the corresponding worker and job pair; the matched pairs in (a) are circled in red.

To that end, we impose a natural low-rank structure of the reward matrix. The low-rank property

has been demonstrated for general high-dimensional matrices (Udell and Townsend 2019) and has

proven to be practically efficient across various domains, such as recommendation systems (Bell

and Koren 2007), healthcare (Schuler et al. 2016), and textual analytics (Pennington et al. 2014).

Formally, consider a matching market with N types of workers and K types of jobs. The reward

matrix Θ∗ ∈RN×K represents the true matching qualities between jobs and workers; particularly,

the (i, j)th entry of the matrix, Θ∗(i,j), denotes the reward of matching workers of type i ∈ [N ] =

{1, · · · ,N} and jobs of type j ∈ [K] = {1, · · · ,K}. We expect that, in a large matching market with

large values of N and K, the reward matrix Θ∗ has a low rank r much smaller than the number of

worker and job types, i.e., rank(Θ∗) = r≪min{N,K}. In other words, we have Θ∗ =U∗V∗⊤ for

someU∗ ∈RN×r andV∗ ∈RK×r, of which the ith rowU∗(i,·) and the jth rowV∗(j,·) are r-dimensional

latent vectors of worker type i and job type j respectively. These latent vectors can be interpreted

as latent features of the corresponding worker and job types. For example, U∗(i,·) might include
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worker type i’s information such as education background and working experience; similarly, the

V∗(j,·) might contain job type j’s information such as income level and job responsibilities. Then,

the matching reward Θ∗(i,j) is determined by the interaction between the latent features of worker

type i and job type j. Consequently, we are able to cross-learn all the matching rewards of workers

with type i (or jobs with type j) since they share a common latent feature vector U∗(i,·) (or V∗(j,·)).

This allows us to estimate a much smaller number of r(N +K) unknown parameters of U∗ and V∗

(Candes and Plan 2010) to learn the whole matching market, in contrast to learning NK unknown

rewards in Θ∗ directly.

One state-of-the-art approach of matrix completion is to incorporate a nuclear norm penalty

on Θ∗ (Koltchinskii et al. 2011, Negahban and Wainwright 2012). In particular, the nuclear norm

penalty (which we will introduce in Section 3) only requires few samples to identify the sparse

set of non-zero singular values of the matrix accurately and hence estimate the low-rank matrix

efficiently.

However, we face two key challenges when applying this approach to learn the matching reward

matrix. First, the current literature on matrix completion primarily provides improved performance

bounds under the assumption that the entries of the matrix are observed or sampled independently,

a condition not met by our setting due to matching interference. To illustrate, consider a one-

to-one matching problem as in Figure 1, which shows one matching of the market. The three

observed entries, circled in red in Figure 1b, are not independently observed since the same worker

cannot choose multiple jobs and vice versa (i.e., there can be at most one entry in each row and

column). Thus, it introduces additional correlation among observations and makes the current proof

techniques not applicable. Second, to guide the downstream matching decision in certain scenarios,

it is necessary to quantify the statistical uncertainty of the estimate of each matrix entry. For

instance, given informative entry-wise uncertainty, we can find the matching with the maximum

total matching reward (e.g., optimal matching) or learn the preference rankings of the demand

side (e.g., stable matching) with high probability. However, the mainstream of the literature can

only provide a theoretical guarantee of the average accuracy over all matrix entries. A few recent

studies establish entry-wise error bounds for low-rank matrices (e.g., Chen et al. 2020, 2021); yet,

these works heavily build on the assumptions of independent sampling and cannot be extended to

our settings with sampling interference.

Our work addresses these two challenges through new analytical techniques. First, most proof

techniques (see, e.g., Klopp 2014, Hamidi and Bayati 2022) rely on a contraction inequality. Yet, in

our context with matching interference, this approach results in a sub-optimal error rate as if matrix

completion were not employed; that is, the error rate scales similarly as that of estimating every

entry using its sample average individually. To overcome this issue, we utilize a new “linearization”
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trick that leverages the sampling property of matrix completion problems, and show that a near-

optimal bound with improved dependence on matrix dimensions (i.e., N and K) is achievable.

Second, we develop a novel “double-enhancement” procedure that refines entry-wise estimates

of the reward matrix and improves the entry-wise accuracy atop the nuclear norm regularized

estimation. Specifically, this procedure estimates more precisely each row of the latent feature

matrices U∗ and V∗ respectively — and thus each entry of Θ∗ — using linear regression based on

the initial nuclear norm regularized estimate of Θ∗. We provide a tighter theoretical guarantee on

the entry-wise errors of matrix completion by analyzing this enhanced estimator in our matching

setting, while the existing proof techniques only work for independent sampling.

Furthermore, we extend our approach to online learning problems, where we efficiently learn

the matching reward matrix in a dynamic fashion and perform both optimal matching and stable

matching via bandit algorithms (Gai et al. 2010, Liu et al. 2020). Analogous to our offline setting,

our bandit policy incorporates a natural low-rank structure of the unknown reward matrix to effec-

tively balance the exploration of new worker-job pairs and the exploitation of the learned matching

rewards. Specifically, it leverages low-rank matrix completion to accelerate the exploration phase

during online matching. We derive regret upper bounds of our algorithms with improved depen-

dence on the matrix dimension for bandit learning of both optimal matching and stable matching.

Intuitively, our low-rank reward estimators allow us to collect only few samples while still obtain

accurate reward estimates across all worker-job pairs during the exploration stage. Accordingly,

our approaches provide sample-efficient solutions that substantially reduce the exploration costs,

which is especially crucial for online matching problem with a large number of participants or with

a relatively short time horizon.

Finally, we empirically evaluate the performance of our approaches using both synthetic and real

data in the labor market. Our findings indicate that our approaches based on matrix completion

significantly improve the learning process in the offline setting and facilitate the overall matching

performance in the online scenario.

1.1. Related Literature

Our work relates to the literature of learning through matrix completion, and bandits for matching

problems.

Matrix Completion. Matrix completion involves learning missing entries of a matrix from a small

sample of observed ones, particularly for high-dimensional data that naturally forms a matrix

structure. Due to its efficiency, there has been significant interest from the operations research and

machine learning communities in applying matrix completion to various domains, such as learning

preferences in recommendation systems (Farias and Li 2019), personalizing assortment planning
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(Kallus and Udell 2020), detecting inventory inaccuracies (Farias et al. 2024), and enhancing tex-

tual analytics (Xu et al. 2024). As aforementioned, our reward learning problem in the matching

markets can also be formulated as a matrix completion task, where workers and jobs define the two

dimensions of the reward matrix. To the best of our knowledge, we propose the first framework of

using matrix completion to facilitate reward learning in the matching problems.

Typically, the low-rank matrix completion literature assumes the entries of the unknown matrix

Θ∗ of interest are sampled with the same probability independently (i.e., uniformly at random)

(Candes and Recht 2008, Candès and Tao 2010, Koltchinskii et al. 2011). These studies show

theoretically that the nuclear norm regularization can give rise to a minimax optimal error rate up

to logarithmic terms in Frobenius norm, which measures the average estimation accuracy. Negahban

and Wainwright (2012), Klopp (2014), Hamidi and Bayati (2022) later consider more general

random sampling schemes, where the matrix entries are still sampled independently but with

different probabilities (i.e., non-uniformly at random). Recently, Athey et al. (2021) conduct one

of the first investigations into the sampling scheme with dependence, where the entries within the

same row are observed dependently due to the panel data structure in a causal inference problem.

In contrast, the dependence of the entry sampling in our problem is driven by the aforementioned

matching interference, where we can at most observe one entry from each row and column in a

one-to-one matching (see Figure 1b). As a result, existing proof techniques (Klopp 2014, Athey

et al. 2021, Hamidi and Bayati 2022) that exploit contraction inequality (e.g., Theorem 2.3 in

Koltchinskii (2011) or Theorem 4.4 in Ledoux and Talagrand (2013)) lead to sub-optimal error

bounds in Frobenius norm in our setting. Rather, we build on a “linearization” trick that leverages

the sampling property of matrix completion, and show that we can achieve a near-optimal error

bound with improved dependence on matrix dimensions (i.e., the number of worker/job types).

For matching problems, it is also important to provide entry-wise error control in ℓ∞ norm for

downstream decision making, which is a harder problem than controlling Frobenius norm error.

Chen et al. (2020, 2021) are among the first to provide a near-optimal entry-wise error bound for

matrix completion; however, their analyses rely on the assumption that the entries are sampled

uniformly at random, and thus do not apply to our sampling scheme with matching interference.

We develop a novel double-enhancement algorithm that improves the standard nuclear norm reg-

ularized estimator and ensures an entry-wise accuracy guarantee in our setting. Our approach

is inspired by the row-enhancement technique from Hamidi et al. (2019); however, they consider

a different matrix factorization problem for contextual bandits, and only provide row-wise error

guarantees1.

1 Row-wise error control is simpler than entry-wise analysis, but harder than Frobenius norm error control.
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We also note that our matrix completion problem is different from those in Candes and Recht

(2008), Candes and Plan (2010), Chen et al. (2020), which only allow each entry to be observed

at most once. In turn, we follow the settings in an alternative line of matrix completion literature

(Koltchinskii et al. 2011, Negahban and Wainwright 2012, Klopp 2014, Hamidi and Bayati 2022),

where we might observe each entry repeatedly throughout sampling.

Multi-Armed Bandits. Our online learning algorithms contribute to the literature of bandit

algorithm design for optimal matching and stable matching. In the bandit problem for optimal

matching, the goal is to learn the unknown rewards of matching workers with jobs over time and

maximize the cumulative rewards of matched pairs. This can be formulated as a combinatorial

semi-bandit problem, where each arm is one pair of worker and job types in our setting and a set of

arms that form one matching is played simultaneously in each round (Gai et al. 2010, Chen et al.

2013, Kveton et al. 2015). Chen et al. (2013) and Wang and Chen (2018) propose Combinatorial

Upper Confidence Bound (CUCB) and Combinatorial Thomspon Sampling (CTS), adapted from

the classic bandit literature (Auer et al. 2002, Chapelle and Li 2011). Kveton et al. (2015) improve

the CUCB algorithm; they derive near-optimal upper bounds of their algorithm, matching the

lower bounds.

Recently there has also been growing interest in learning stable matching (Gale and Shapley

1962) from bandit feedback in a centralized platform (Liu et al. 2020, Jagadeesan et al. 2021, Cen

and Shah 2022). Liu et al. (2020) first introduce this bandit problem, where one side of the market

(i.e., agents) has no prior knowledge about its ranking preference over the other side (i.e., arms) and

needs to learn from stochastic rewards of matched pairs. They propose an Explore-then-Commit

(ETC) algorithm to minimize the agent-optimal stable regret — i.e., to find an optimal policy that

is a stable matching and optimal for the specific agent side. Cen and Shah (2022) extend the model

to incorporate predetermined costs and transfers, and provide a guarantee for both stability and

low regret using Upper Confidence Bound (UCB). Jagadeesan et al. (2021) consider a different

matching with transfers problem (Shapley and Shubik 1971), and introduce a new notion of regret

that captures the deviation of a market outcome from equilibrium. We adopt the bandit setting

from Liu et al. (2020) for our stable matching problem with workers being the agent side and jobs

being the arms, as its regret definition aligns closely with the traditional bandit literature.

However, the regret rates of existing bandit algorithms exhibit an unfavorable dependence on the

number of arms for both optimal matching and stable matching. This can degrade the algorithm

performance, especially when the number of arms is large or the time horizon is relatively short.

As aforementioned, our approach uses matrix completion to expedite the exploration process, and

achieve improved regret upper bounds with regard to the number of arms (i.e., the number of

worker/job types).
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There is another stream of literature that considers a multi-armed bandit or linear contextual

bandit problem, where the unknown parameter of the reward has a low-rank structure (see, e.g.,

Jun et al. 2019, Bayati et al. 2022, Zhou et al. 2024). However, their settings are different from our

matching problem, and thus their algorithms do not apply to our setting with matching interference.

Dynamic Matching. Our online learning part is also related to the dynamic matching literature

in operations research that attempts to incorporate learning in a two-sided market (Massoulié

and Xu 2016, Bimpikis and Markakis 2019, Shah et al. 2020, Johari et al. 2021, Hsu et al. 2022).

However, the majority of this literature focuses on learning unknown types of one market side (e.g.,

worker/job side), and thus requires knowledge of type-dependent matching rewards. Hsu et al.

(2022) provide the first study with both unknown matching payoffs and unknown types of one

side, but consider a different problem with queueing and do not aim to improve the dependence

on market size (e.g., the number of worker/job types) as we do. Sauré and Zeevi (2013) propose

an ETC algorithm and present improved regret dependence on market size (i.e., the number of

products); however, they address a different demand learning problem in dynamic assortment and

hence their technique cannot be extended to our setting. In contrast, we focus on improving the

performance bounds regarding their dependence on market size given unknown rewards and known

types of participants.

1.2. Contributions

We highlight the main contributions of our paper as follows:

1. We propose the first framework that utilizes matrix completion to expedite reward learning in

matching problems. We theoretically justify the efficiency of matrix completion via nuclear norm

regularization in our context with matching interference. Specifically, we present a new proof tech-

nique through which a near-optimal error bound with improved dependence on matrix dimensions

is achievable. We also prove that our error bound is minimax optimal up to logarithmic terms

regarding matrix dimension through a lower bound analysis (Section 3).

2. We further design a novel double-enhancement procedure that significantly refines the accu-

racy of entry-wise estimates of low-rank matrix completion. Our approach works for broader sam-

pling distributions, including our setting of sampling with matching interference, while the existing

guarantees typically depend on the property of independent sampling and do not apply to our

setting (Section 4).

3. We also extend our offline approach to the online learning setting, and design bandit algo-

rithms for both stable matching and optimal matching problems. Particularly, we leverage low-rank

matrix completion to learn the matching reward matrix efficiently to facilitate exploration. We

demonstrate the improvement of our algorithms in matrix dimensions with two regret upper bound

results (Section 5).
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4. We provide experimental results on both synthetic and real data to show that our algorithms

substantially outperform the benchmarks in both offline reward learning problem and online bandit

problems for optimal and stable matching (Section 6).

2. Problem Formulation

This section formalizes the problem of learning the matching rewards between workers and jobs

using offline matching data as a matrix completion problem. In Section 2.1, we formulate the

unknown rewards as a low-rank matrix and introduce the observation model for this reward matrix.

In Section 2.2, we highlight the key challenge of applying matrix completion to matching problems

— i.e., dependent entry-sampling due to matching interference, in contrast to canonical independent

sampling.

Notation. We use regular capital letters for vectors, lowercase letters for scalars, and bold

capital letters for matrices, unless otherwise specified. For any positive integer k, let [k] denote

the index set {1,2, · · · , k}. For any vector V , let V (i) denote its ith entry, and ∥V ∥ denote its ℓ2

norm. For any matrix Θ ∈ Rd1×d2 , we use Θ(i,j) to represent entry (i, j) of a matrix Θ, Θ(i,·)

the ith row of the matrix, and Θ(·,j) the jth column. For a matrix Θ of rank r, we denote its

non-zero singular values by σmax(Θ) = σ1(Θ) ≥ σ2(Θ) ≥ · · · ≥ σr(Θ) = σmin(Θ) > 0, its Frobe-

nius norm by ∥Θ∥F =
√∑r

i=1 σ
2
i (Θ), its operator norm by ∥Θ∥op = σ1(Θ), its nuclear norm by

∥Θ∥∗ =
∑r

i=1 σi(Θ), its ℓ2,∞ norm by ∥Θ∥2,∞ = maxi∈[d1] ∥Θ(i,·)∥, and its vector ℓ∞ norm by

∥Θ∥∞ =maxi,j |Θ(i,j)|. Given any two matrices Θ,Θ′ ∈Rd1×d2 , we denote their trace inner prod-

uct by ⟨Θ,Θ′⟩ =
∑d1

i=1

∑d2
j=1Θ

(i,j)Θ′(i,j), and their Hadamard product by Θ ◦Θ′ ∈ Rd1×d2 with

(Θ ◦Θ′)(i,j) =Θ(i,j) ·Θ′(i,j). Let ei(d)∈Rd denote a basis vector with value 1 in its ith entry and 0

otherwise, i.e., ei(d)
(j) = 1 for j = i and 0 otherwise.

2.1. Matching in a Two-Sided Market

Consider a two-sided online labor platform (see, e.g., Example 1) with N available types of workers

to be matched withK unfilled types of jobs. AssumeN ≤K without loss of generality. The platform

is centralized — i.e., it has full control over job assignments.

Reward Matrix. The true qualities or rewards of matching the worker and job sides can be

naturally collected into a matrix form, according to the two-sided structure of the market (see, e.g.,

Figure 1). We use Θ∗ ∈RN×K to denote the reward matrix, where the worker types i∈ [N ] and job

types j ∈ [K] define one dimension of the matrix respectively. Particularly, each row i of the matrix

corresponds to the matching rewards of one worker type i, and each column j corresponds to one

job type j; the value of each entry (i, j), i.e., Θ∗(i,j), indicates the expected reward the platform

receives when a worker of type i is matched with a job of type j, for i∈ [N ] and j ∈ [K].
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We make two standard assumptions on the reward matrix Θ∗, which is directly adapted from

the matrix completion literature (Koltchinskii et al. 2011, Negahban and Wainwright 2012, Klopp

2014, Farias and Li 2019, Chen et al. 2020, Athey et al. 2021). First, the true reward matrix Θ∗

is entry-wise bounded by 1, i.e., ∥Θ∗∥∞ ≤ 1. Note that we choose an upper bound of 1 just for

simplicity — our results hold for any constant upper bound.

Second, Θ∗ has low rank, i.e., rank(Θ∗) = r ≪ min{N,K}. As discussed in Section 1, Udell

and Townsend (2019) demonstrate that any sufficiently large matrix has low-rank property in

general, while typical matching markets oftentimes face a large number of worker and job types

(i.e., the matrix dimensions N and K are large) in practice. Particularly, as mentioned in Section

1, there exist two low-dimensional matrices U∗ ∈ RN×r and V∗ ∈ RK×r such that Θ∗ =U∗V∗⊤.

The matching reward of worker type i and job type j is then jointly determined by their latent

features, i.e., Θ∗(i,j) =U∗(i,·)V∗(j,·)⊤. Intuitively, low-rankness suggests that the true reward matrix

depends on very few parameters, which helps reduce the number of parameters to learn from NK

of Θ∗ to r(N +K) of U∗ and V∗.

Matching. We consider the one-to-one matching scheme for simplicity, i.e., each worker can be

matched with at most one job and vice versa; our technical results can be naturally extended to

the general many-to-many matching setting. Let M denote one such matching, defined as a set of

pairs of worker and job types:

M= {(i, j(i)) | i∈ [N ]; j(i) ̸= j(i′), ∀i ̸= i′},

where, with slight abuse of notation, let j(i) denote the job type matched with the ith worker type,

and no two worker types i ̸= i′ share the same job types j(i) ̸= j(i′) and vice versa. Note that the

platform clears the market in any matching.

We can also denote a matching M using a matrix X ∈ {0,1}N×K , where the (i, j)th entry X(i,j)

takes value 1 if (i, j) ∈ M and 0 otherwise. Any matching should belong to the following set of

matchings

M=

{
X∈ {0,1}N×K

∣∣∣∣∣
K∑
j=1

X(i,j) = 1,∀i∈ [N ];

N∑
i=1

X(i,j) ≤ 1,∀j ∈ [K]

}
. (2.1)

Particularly,
∑N

i=1X
(i,j) ≤ 1 for a job type j since j can be assigned to at most one worker type;

in other words, the jth column of X, i.e., X(·,j), contains at most one entry of 1 and elsewhere 0.

Similarly,
∑K

j=1X
(i,j) = 1 since the market clears and each worker type can take exactly one job

type. When no ambiguity arises, we will use M and X interchangeably in the subsequent sections.

We further define the matched pair of worker type i in a matching X using a superscript i

Xi = ei(N)ej(i)(K)⊤ ∈RN×K , (2.2)
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that is, a basis matrix with the (i, j(i))th entry being 1 and 0 otherwise (recall that ei(d)∈Rd is a

basis vector with value 1 in its ith entry and 0 otherwise). By our definitions, the matched pairs of

all worker types make up the matching X:

N∑
i=1

Xi =X∈M. (2.3)

Observation Model. Our offline matching data consists of n independently observed matchings

on the platform. Let Mt (and Xt) denote each matching for t∈ [n], and Xi
t denote the matched pair

of worker type i in the matching Xt. We use (i, jt(i)) ∈Mt to represent a matched pair of worker

type i and its corresponding job type from Mt. Then, each matching Xt is sampled independently

from the set M defined in (2.1); formally, Xt is drawn from a distribution Π, where Π is a discrete

uniform distribution over M2.

For each matching Mt, the platform observes only a noisy signal of the true reward Θ∗(i,jt(i)) for

any pair (i, jt(i)) ∈Mt. We concatenate the N noisy rewards of the N matched pairs in Mt into

a vector Yt ∈RN , and denote the N corresponding noises as εt ∈RN . Specifically, the ith entry of

Yt, denoted by Y
(i)
t , corresponds to the observed reward of the pair (i, jt(i)); ε

(i)
t represents the

unobserved noise of that pair. Then, each reward Y
(i)
t of worker type i in a matching Mt has

Y
(i)
t = ⟨Xi

t,Θ
∗⟩+ ε

(i)
t (2.4)

for t∈ [n] and i∈ [N ]. The noises ε
(i)
t are σ-subgaussian (see Definition 1) and independent across

matchings t ∈ [n]; we want to mention that the noises are not required to be independent across

matched pairs for i∈ [N ] within the same matching t∈ [n].

Definition 1. A random variable X ∈ R is σ-subgaussian if E[X] = 0 and E[exp(sX)] ≤

exp
(

σ2s2

2

)
, ∀s∈R.

To simplify notation, we define an observation operator Xt :RN×K →RN such that

Xt(Θ) =
[
⟨X1

t ,Θ⟩, · · · , ⟨XN
t ,Θ⟩

]⊤
(2.5)

for any Θ∈RN×K and t∈ [n].

Remark 1. As we will discuss in Section 2.2, the entries of Θ∗ are not independently sampled,

i.e., {Xi
t}i∈[N ],t∈[n] are not independent, even though the matchings {Xt}t∈[n] are independent.

Particularly, {Xi
t}i∈[N ] are correlated for every t∈ [n] due to the one-to-one matching constraint.

2 Sampling one matching X from the combinatorial set M can be efficiently implemented in practice by randomly
generating a N -permutation of K, i.e., an ordered sequence of N randomly selected numbers from the index set [K]
without replacement. Then, the ith element in this sequence represents the column index j(i) where the ith row of X
takes the value 1.
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Estimation. Our problem of recovering the unknown low-rank matrix Θ∗ using entry-wise

observations is an instance of the matrix completion problem (Candes and Recht 2008, Candès

and Tao 2010). In total, we observe nN samples for the model (2.4) from n matchings and N

matched pairs in each matching, i.e., {(Xi
t, Y

(i)
t ) | t∈ [n], i∈ [N ]}. Note that we might face a high-

dimensional problem where the sample size nN could be limited relative to the total number of

unknown parameters in Θ∗, i.e., NK. As a result, we propose to exploit the low-rank structure of

Θ∗ and efficiently learn the unknown matrix using matrix completion. We describe the details of

the estimation procedure in Section 3.1.

We measure the estimation accuracy of an estimator Θ̂ by its Frobenius norm, i.e., ∥Θ̂−Θ∗∥F ,

in Section 3. As aforementioned, we require an entry-wise error guarantee for certain downstream

matching problems. Thus, we also measure an entry-wise estimation error of Θ̂ by its ℓ∞ norm,

i.e., ∥Θ̂−Θ∗∥∞, in Section 4.

2.2. Sampling with Matching Interference

A key challenge of our matrix completion problem is the dependence of entry sampling due to inter-

ference in the matching markets. We provide detailed descriptions of this problem, and compare

our matching sampling scheme to two standard independent sampling schemes in the literature,

i.e., independent sampling and independent row sampling. For simplicity, we take the one-to-one

matching setting as an example; our argument applies to many-to-many matching setting as well.

(a) Independent Sampling (b) Indepedent Row Sampling (c) Matching Sampling

Figure 2 Toy example of different sampling schemes for N = 3 worker types and K = 4 job types. One red

triangle indicates that the corresponding entry is sampled once. (a) shows an independent sampling scheme,

where all entries are sampled at random with replacement. (b) shows an independent row sampling scheme,

where the column is selected at random for each row independently. (c) shows a dependent sampling scheme with

matching interference in our matching setting.

Independent Sampling. Independent sampling is the most widely studied sampling scheme

in the matrix completion literature. Typically, it refers to the setting where the entries of a matrix

are sampled at random either uniformly (see, e.g., Candes and Recht 2008, Candès and Tao 2010)
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or non-uniformly (see, e.g., Negahban and Wainwright 2012, Klopp 2014). The majority of the

literature derives an improved estimation error bound for an unknown low-rank matrix under this

assumption, given its tractability. For instance, consider sampling uniformly at random in the

observation model (2.4). In this case, the entry sampling or the matched pair Xi
t has

Xi
t = eι(N)ej(K)⊤, (2.6)

where ι and j are randomly sampled from the index sets [N ] and [K] respectively for any i∈ [N ] and

t∈ [n]. Note that here both ι and j do not depend on the indices i and t. Therefore, {Xi
t}i∈[N ],t∈[n]

are all independent from each other.

We illustrate that in Figure 2a; for simplicity, we consider the three samples of a specific t but

of three different i’s with i∈ [N ] and N = 3, i.e., {(Xi
t, Y

(i)
t ) | i∈ [3]}. Particularly, one red triangle

indicates that the corresponding entry is sampled once (or the corresponding worker-job pair is

matched once). Then, all entries of the matrix are sampled three times at random with replacement

given our definition in (2.6); since the location of one red triangle does not affect that of another

red triangle, the entries are sampled independently. Consequently, the same pair of worker and job

types might be observed multiple times, while some worker or job types might not be matched

through the sampling process. Apparently, independent sampling cannot guarantee a one-to-one

matching for our matching setting.

Independent Row Sampling. An alternative sampling scheme is the independent row sam-

pling (Jain and Pal 2022, Baby and Pal 2024). Particularly, sampling takes place within each row

of the matrix, and a column is randomly selected for each row independently. Now, consider inde-

pendent row sampling in the observation model (2.4). In such a case, the entry sampling or the

matched pair Xi
t has

Xi
t = ei(N)ej(K)⊤,

where j is randomly sampled from the index set [K] for any i ∈ [N ] and t ∈ [n]. Different from

our example of independent sampling, there is no longer randomness in sampling rows for a given

i ∈ [N ]. Yet, {Xi
t}i∈[N ],t∈[n] are still independent from each other, since the columns are uniformly

sampled at random regardless of the row index i. The independent row sampling is closely related

to the independent sampling, since the entry samplings or matched pairs Xi
t’s are still independent

from each other.

This is illustrated in Figure 2b. Similarly, we consider three samples of a specific t but of three

different i’s so matrix entries are observed exactly three times through {Xi
t}i∈[N ]. Under inde-

pendent row sampling, the entries in each row are randomly sampled once; the entry sampling is
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independent across rows, since the column of one red triangle in a given row does not interfere

with those of different rows. As a result, multiple worker types might be matched with the same

job type, though no worker type remains unmatched. The independent row sampling still cannot

ensure a one-to-one matching for our matching purpose.

Matching Sampling. In contrast, the one-to-one matching constraint in our matching problem

raises a unique challenge for adopting matrix completion techniques. Specifically, our matching

sampling scheme introduces dependence of entry sampling or matched pairs within a matching due

to matching interference. Recall that {Xi
t}i∈[N ],t∈[n] are not independent from each other in our

observation model (2.4). In particular, the N matched pairs {Xi
t}i∈[N ] that comprise any matching

Xt are correlated, since they have to satisfy

1 =

K∑
j=1

X
(i,j)
t =

K∑
j=1

X
i(i,j)
t , ∀i∈ [N ] , and 1≥

N∑
i=1

X
(i,j)
t =

N∑
i=1

X
i(i,j)
t , ∀j ∈ [K]

according to (2.1) and (2.3) (recall that the superscript (i, j) indicates the entry (i, j) of a matrix).

Basically, these inequalities enforce the one-to-one matching constraint, ensuring that two worker

types i ̸= i′ cannot be matched with a same job type j in the same matching Xt, i.e., jt(i) ̸= jt(i
′).

Nevertheless, any matched pairs Xi
t and Xi′

t′ across different matchings Xt and Xt′ with t ̸= t′

are still independent for any i, i′ ∈ [N ], since the matchings are independently sampled from the

distribution Π given our model setup in Section 2.1.

In Figure 2c, we present one possible matchingXt of three observed entries or matched pairs given

a specific t and i∈ [N ]. The entries are sampled according to the one-to-one matching constraint;

thus, the entry sampling is dependent in our case, as any two of the three red triangles cannot fall

into the same row or column. In other words, no two worker types share the same job type and

vice versa, and all worker types are fully occupied.

Our matching sampling scheme involves dependence across entry sampling due to matching

interference, and is hence intrinsically different from both the independent sampling and indepen-

dent row sampling schemes. Therefore, the current proof techniques based on these assumptions

cannot be extended to our setting, and new proof techniques are required to achieve an optimal

sample efficiency for our matching sampling. In the next section, we first specify our matrix com-

pletion approach, and then provide a new proof technique to demonstrate the optimality of matrix

completion in such a setting.

3. Matrix Completion for Offline Matching Data

We first describe the standard matrix completion approach of nuclear norm regularization, and

utilize it to estimate the reward matrix in our matching setting in Section 3.1. Then, in Section

3.2, we prove that this estimator can achieve a near-optimal error rate in Frobenius norm under
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dependent sampling with matching interference. Finally, we provide a minimax lower bound for

our estimator to show its sample efficiency in Section 3.3.

3.1. Estimation via Nuclear Norm Regularization

We estimate the unknown reward matrixΘ∗ using the standard nuclear norm regularization defined

as follows:

Θ̂= argmin
∥Θ∥∞≤1, rank(Θ)≤r

{
1

n

n∑
t=1

∥Yt −Xt(Θ)∥2 +λ∥Θ∥∗
}
, (3.1)

where Xt is the observation operator constructed with respect to the N matched pairs {Xi
t}i∈[N ]

as defined in (2.5), Yt is a vector of N noisy rewards observed for the N matched pairs in one

matching Mt, and λ is a hyperparameter. In total, we have nN samples of entries observed through

n matchings with N matched pairs in each matching. We follow (Chen and Wainwright 2015, Ma

et al. 2018) and search our estimate in rank(Θ)≤ r to ensure that our estimate has rank no greater

than r. Previously, Chen and Wainwright (2015), Ma et al. (2018) demonstrate that such a rank

constraint can lead to improved estimation accuracy. Indeed, enforcing the low-rank structure is

crucial for obtaining an optimal error rate in our Theorem 13.

Our objective function (3.1) is directly adapted from the existing matrix completion literature

(Koltchinskii et al. 2011, Negahban and Wainwright 2012). The first part of (3.1) is the mean

squared error of the matrix estimation. Its notation slightly departs from the literature since we

calculate the loss in two steps — we first estimate the errors of the N matched pairs within each

matching, and then accumulate the errors of all the n matchings.

In the second part of (3.1), we use the nuclear norm penalty to efficiently estimate the reward

matrix. Note that a low-rank matrix has only a sparse set of non-zero singular values. Considering

that, we implement the nuclear norm regularization to identify such a sparse set accurately and

thus estimate our low-rank reward matrix efficiently. Intuitively, the nuclear norm (defined as the

sum of the matrix singular values) regularization for matrix estimation is comparable to the LASSO

estimator (Bühlmann and Van De Geer 2011, Negahban et al. 2012) for linear regression — the

LASSO penalty can efficiently identify and estimate a sparse unknown vector parameter.

The hyperparameter λ trades off bias and variance. When λ → 0, we perform a least square

estimation using the observed data; the estimator is unbiased but has high variance due to the

scarcity of the samples. Alternatively, when λ is large, we might regularize the estimator too much

towards zero; in other words, we obtain an estimator with high bias despite low variance. Our main

result in Theorem 1 will provide a theoretically optimal value for λ, which appropriately balances

bias and variance in our setting.

3 We want to note that such a constraint is only for theoretical purpose; in practice, the nuclear norm regularization
remains effective without the constraints.
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3.2. Error Bound in Frobenius Norm

To measure the accuracy of our matrix completion approach in (3.1), we provide an estimation

error bound in Frobenius norm in Theorem 1. Intuitively, the Frobenius norm error quantifies the

average accuracy of the estimator across all matrix entries. To derive Theorem 1, we first need to

show that an intermediary result of restricted strong convexity (RSC) holds with high probability

for our matching model. This condition is common in the matrix completion literature (Negahban

and Wainwright 2012, Negahban et al. 2012, Klopp 2014, Athey et al. 2021). To proceed, we define

the L2(Π) norm of any matrix Θ∈RN×K as

∥Θ∥L2(Π) =

√√√√E

[
N∑
i=1

⟨Xi
t,Θ⟩2

]
,

where the expectation is taken over {Xi
t}i∈[N ] defined in (2.2) (recall that Xt’s are sampled from

Π).

Proposition 1. Define for any α> 0

Cα(r) =

{
∆∈RN×K

∣∣∣∣∥∆∥∞ ≤ 1,∥∆∥2L2(Π) >
c0Nα

n
, rank(∆)≤ r

}
. (3.2)

Then, for any ∆∈ Cα(r), we have

1

n

n∑
t=1

N∑
i=1

⟨Xi
t,∆⟩2 ≥ c2∥∆∥2L2(Π) − c3

(
r2K log[(N +K)n]

n

)
, (3.3)

with probability greater than 1− exp(−α), where c0, c2 and c3 are positive constants.

The proof is provided in Appendix A.5. Essentially, our RSC condition shows that the loss

function in the first part of (3.1) is almost strongly convex, since the last term on the right hand

side of (3.3) is minor with moderate size of n. This condition is similar to the minimum eigenvalue

condition for linear regression or compatibility condition for LASSO estimation (Bühlmann and

Van De Geer 2011, Negahban et al. 2012), which provides enough convexity guarantee on the

loss function to identify the optimal estimates. Intuitively, our matching sampling scheme, though

limited by the one-to-one matching constraint, still captures and reveals a substantial proportion

of the true matrix entries.

Based on the RSC condition, we now present our main result that provides a theoretical guarantee

on the nuclear norm regularized estimator in (3.1). We will further show its minimax optimality

(up to logarithmic terms) in the upcoming Section 3.3. In essence, our result demonstrates that

the standard nuclear norm regularization approach can still achieve an optimal performance even

under a harder matching sampling scheme than the canonical independent sampling.
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Theorem 1. The estimator Θ̂ in (3.1) satisfies∥∥Θ̂−Θ∗
∥∥
F
= Õ

(
rK√
n

)
with probability at least 1− 4exp(−α) for any α > 0, where λ = cλσ(α+ log(N +K))/

√
n for a

positive constant cλ.

We provide the proof in Appendix A.2. The nuclear norm regularized estimator yields an estimation

error of Õ(rK/
√
n) in the Frobenius norm in our setting. In contrast, we will obtain a worse rate

of O(K
√
N/n), if we estimate each entry of the matrix independently using sampling average

without sharing any latent information. Our result shows that matrix completion can be especially

helpful in the high-dimensional setting when N and K are much larger than the rank r. Note

that under independent sampling scheme, Negahban and Wainwright (2012) provide the minimax-

optimal error bound in Frobenius norm as Õ(K
√
r/n)4. Our error bound is comparable with that

under independent sampling; we have an additional factor of
√
r, which is rather insignificant since

r ≪min{N,K}, due to the complexity introduced by the sampling interference in our matching

setting.

Indeed, the presence of certain dependent structure among sampling can give rise to poor error

rates in a matrix completion problem (Athey et al. 2021). Existing proof techniques in Klopp (2014),

Hamidi and Bayati (2022) use contraction inequality; however, this proof strategy only works under

their independent sampling scheme. In our matching sampling scheme with dependent structure,

the same technique will induce a loose bound of Õ(K
√
rN/n) with an extra factor

√
N/r (≫ 1);

in other words, the error bound is similar to that of using sampling average to estimate matrix

entries individually without matrix completion. Particularly, a key step in proving Proposition 1

(see Appendix A.5) is to bound an error term that captures the degree of non-convexity of the loss

(i.e., the first part of (3.1)). Such an upper bound leads to the last term on the right hand side of

our RSC condition in (3.3), and eventually the error bound in Theorem 1. Specifically, this small

error term is

E
[
sup
∆∈C̃

1

n

n∑
t=1

ξt(
N∑
i=1

⟨Xi
t,∆⟩2)

]
(3.4)

for some restricted set C̃ (⊆ Cα(r), defined in (3.2)), where Xi
t is defined in (2.2) and {ξt}t∈[n] is a

sequence of Rademacher random variables. A contraction inequality (Maurer 2016) results in an

upper bound with a non-trivial extra factor of N — i.e.,

N ·E
[
sup
∆∈C̃

1

n

n∑
t=1

N∑
i=1

ξt,i⟨Xi
t,∆⟩

]
,

4 The rate is adjusted according to two differences in our setting. First, we observe nN samples in total. Second, we
assume ∥Θ∗∥∞ ≤ 1 while Negahban and Wainwright (2012) assume ∥Θ∗∥F is upper bounded by a constant.
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where {ξt,i}t∈[n],i∈[N ] is a sequence of Rademacher random variables — and thus degrades the final

Frobenius norm error bound.

To tackle this challenge, we propose a new “linearization” trick to refine the upper bound of (3.4)

and thus obtain a near-optimal error guarantee. Particularly, our linearization technique leverages

the sampling property of matrix completion to linearize and upper bound (3.4) — i.e., as Xi
t is a

basis matrix with only one entry being 1, we have

⟨Xi
t,∆⟩2 = (∆(i,jt(i)))2 = ⟨Xi

t,∆ ◦∆⟩,

where ∆ ◦∆ ∈ RN×K is the Hadamard square of ∆ with (∆ ◦∆)(i,j) = (∆(i,j))2. Then, we can

simply upper bound (3.4) with

E
[
sup
∆∈C̃

1

n

n∑
t=1

ξt

N∑
i=1

⟨Xi
t,∆ ◦∆⟩

]
.

We further manage to control this upper bound without introducing additional significant factors

by using a property of Hadamard square, i.e., the Hadamard square of a low-rank matrix is also

low-rank. This simple trick, in place of contraction inequality, provides a tighter guarantee for

the convexity of our loss function in our RSC condition, and hence improves our error bound by

replacing a significant factor of
√
N with only a much smaller

√
r (≪

√
N).

3.3. Minimax Lower Bound

We establish the minimax lower bound in Frobenius norm for our matrix completion approach

for matching problems. We show that our nuclear norm regularized estimator is minimax optimal

since its upper bound in Theorem 1 matches the lower bound we provide below in Theorem 2.

We first define the minimax risk of our problem in the Frobenius norm as

ℓ(Θ∗,∥ · ∥F ) = inf
Θ̃

sup
Θ∗∈C

E
[
∥Θ̃−Θ∗∥F

]
,

where C = {Θ ∈RN×K | rank(Θ) = r,∥Θ∥∞ ≤ 1} and the infimum ranges over all possible estima-

tors. The minimax risk measures in principle the complexity of estimating any unknown matrix

Θ∗ satisfying our assumptions. We provide a lower bound for the minimax risk as follows.

Theorem 2. The minimax risk of Θ∗ satisfies

ℓ(Θ∗,∥ · ∥F ) =Ω

(
K

√
r

n

)
.

We provide the proof in Appendix B. The proof strategy is similar to that of Theorem 3 in

Negahban and Wainwright (2012) and Theorem 5 in Koltchinskii et al. (2011), which provide a

minimax lower bound under the independent sampling scheme. The result shows that the minimax
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lower bound of the matrix completion problem in our matching setting scales as Ω(K
√
r/n); note

that this bound is the same as the lower bound provided in Negahban and Wainwright (2012) for

independent sampling scheme5. Compared to our upper bound in Theorem 1, this lower bound

suggests that our estimator in (3.1) is minimax optimal up to logarithmic terms and insignificant

factors such as
√
r (≪min{N,K}).

4. Double-Enhancement Procedure

In this section, we show how to obtain a desired entry-wise guarantee, which is essential to some

downstream matching decision-making processes such as online stable matching discussed in Sec-

tion 5.2. We first design a double-enhancement procedure to produce an enhanced estimator (Sec-

tion 4.1). We then provide an entry-wise error bound for this enhanced estimator (Section 4.2),

which is typically harder than the Frobenius error bound in Section 3.

4.1. Double-Enhancement Design

As aforementioned, to guide certain downstream decision making of matching, it is important to

control the statistical uncertainty of the entry-wise estimates in ℓ∞ norm. For instance, entry-wise

estimates enable learning the total reward of one matching or the preference rankings of the market

sides, which can be crucial for decision making of matching discussed in Section 5. To that end,

we provide a double-enhancement technique atop the nuclear norm regularization to further refine

the entry-wise estimation. The procedure is summarized in Algorithm 1.

Our double-enhancement procedure is motivated by a row-enhancement design in Hamidi et al.

(2019). However, our matching context differs from their problem in two aspects. First, we consider

a matrix completion problem, where our observation operator in (2.5) only reveals entry-wise

information of matching rewards. In contrast, Hamidi et al. (2019) consider a matrix factorization

problem for contextual bandits; their observation operator reveals information induced by Gaussian

contexts and thus provides more information than ours. Second, they only provide row-wise error

controls, while we need an entry-wise error guarantee, which is much harder than obtaining row-wise

or Frobenius norm error bounds (Chen et al. 2020). Typically, the standard analytical techniques

quantify the uncertainty of the matrix estimates as a whole in Frobenius norm, such as our bound

in our Theorem 1. This motivates us to design a new analytical approach to sharpen the entry-wise

estimation through carefully characterizing and enhancing the estimated row and column spaces

of the matrix.

Particularly, our double-enhancement procedure achieves this goal through the following steps

based on the nuclear norm regularized estimates. First, we split the whole n matchings into two

5 Analogous to Footnote 4, the rate is adjusted according to our sample size of nN and our assumption ∥Θ∗∥∞ ≤ 1.
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Algorithm 1 Double-Enhancement

Inputs: λ

Set n1 = ⌊n/2⌋, J1 = [n1], J2 = [n] \ [n1]

Calculate Θ̂ in (3.1) using the data {(Xi
t, Y

(i)
t ) | t∈J1, i∈ [N ]}

Compute the SVD Θ̂= ÛD̂V̂⊤

for i∈ [N ] do

Set Ri = {(Xi
t, Y

(i)
t ) | t∈J2}

Compute β̃i = argminγ∈Rr

{ ∑
(X,y)∈Ri

(y−X(i,·)V̂γ)2
}

end for

for each j ∈ [K] do

Set Cj = {(Xi
t, Y

(i)
t ) | t∈J2, i∈ [N ], jt(i) = j}

Compute α̃j = argminγ∈Rr

{ ∑
(X,y)∈Cj

(y− Û⊤X(·,j)γ⊤)2
}

end for

Let Ũ=
[
β̃1 β̃2 · · · β̃N

]⊤
, Ṽ=

[
α̃1 α̃2 · · · α̃K

]⊤
Compute the SVD Ũ=U1D1Q1

Compute Θ̃=U1D1Ṽ
⊤

Outputs: Θ̃

subsets J1 and J2, where we estimate a nuclear norm regularized estimator Θ̂ via (3.1) using the

samples in J1. Next, we refine the estimation of the row and column spaces of Θ∗ alternatively

using the remaining samples in J2. Let Θ
∗ =U∗D∗V∗⊤ be the singular value decomposition (SVD)

of the true matrix Θ∗ with U∗ and V∗ being two orthogonal matrices; then, the row and column

spaces of Θ∗ refer to the subspace spanned by the columns of V∗ and columns of U∗ respectively.

Note that our matching model (2.4)

Y
(i)
t = ⟨Xi

t,Θ
∗⟩+ ε

(i)
t = ⟨Xi(i,·)

t ,Θ∗(i,·)⟩+ ε
(i)
t =X

i(i,·)
t V∗︸ ︷︷ ︸
features

(U∗(i,·)D∗)⊤︸ ︷︷ ︸
parameters

+ε
(i)
t (4.1)

can be represented by a standard linear regression model, where X
i(i,·)
t V∗ is the feature vector

and U∗(i,·)D∗ is the unknown parameter vector. Since we have no direct access to V∗ in the

feature vector, we approximate it with the orthogonal matrix V̂ from the SVD of the estimator

Θ̂ = ÛD̂V̂⊤. Now, we can enhance (i.e., first enhancement) the row space of the nuclear norm

regularized estimate Θ̂ by estimating U∗(i,·)D∗ using linear regression; the corresponding least

square estimate Ũ enjoys a tighter row-wise guarantee in ℓ2,∞ norm, i.e., ∥Ũ−U∗D∗∥2,∞ ≈ ∥Θ̂−

Θ∗∥F/
√
N. Similarly, we can also enhance (i.e., second enhancement) the column space with an

estimate Ṽ that satisfies ∥Ṽ−V∗D∗∥2,∞ ≈ ∥Θ̂−Θ∗∥F/
√
K. Finally, our enhanced estimator Θ̃
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is built upon Ũ and Ṽ, obtained through our double-enhancement procedure. The specific design

of Θ̃ allows us to obtain an entry-wise error bound through the row-wise bounds of Ũ and Ṽ,

considering that ∥AB⊤∥∞ ≤ ∥A∥2,∞ ·∥B∥2,∞ for any matrices A,B. In the next section, we provide

a theoretical guarantee on the entry-wise error bound for Θ̃; we will show that the entry-wise error

bound scales as 1/
√
NK of the Frobenius norm error ∥Θ̂−Θ∥F provided in Theorem 1.

4.2. Entry-Wise Estimation Error Bound

Our entry-wise estimation error bound of the enhanced estimator Θ̃, introduced in Section 4.1,

holds under a standard spikiness condition in the matrix completion literature (Negahban and

Wainwright 2012, Hamidi and Bayati 2022).

Assumption 1 (Spikiness). There exists a constant η≥ 1 such that
√
NK∥Θ∗∥∞
∥Θ∗∥F

≤ η.

Intuitively, the spikiness condition excludes matrices with overly large values in a few entries.

If an unknown matrix is spiky, i.e., it has a few entries with extremely large values, then we

cannot accurately estimate all matrix entries using matrix completion without observing all the

entries (Candes and Plan 2010, Negahban and Wainwright 2012, Hamidi and Bayati 2022). For

example, consider a matrix Θ∗ with Θ∗(1,1) = 1 and other entries 0. This matrix does not satisfy

our assumption since
√
NK∥Θ∗∥∞/∥Θ∗∥F =

√
NK, which cannot be bounded by a constant. Note

that it is impossible to recover the entry Θ∗(1,1) and hence maintain small entry-wise error without

observing rewards from this entry. In other words, the spikiness condition ensures the entry-wise

identifiability of the matrix given any random data samples.

Remark 2. The spikiness condition is related to another popular incoherence condition (Candes

and Recht 2008, Candes and Plan 2010, Chen et al. 2020), defined as

∥U∗∥2,∞ ≤ µ

√
r

N
, ∥V∗∥2,∞ ≤ µ

√
r

K
,

for some constant µ in our setting, whereU∗ andV∗ are from the SVDΘ∗ =U∗D∗V∗⊤. Intuitively,

the incoherence condition implies that all rows of U∗ and V∗ are of similar scales, and thus prevents

Θ∗ from being spiky. We note that our results still hold under the incoherence condition.

Next, we state the following result of an entry-wise error bound of the enhanced estimator Θ̃

under the spikiness assumption.

Theorem 3. Suppose n = Ω̃(max{(r4K)/N, (K/N)2}). The enhanced estimator Θ̃ in Algo-

rithm 1 satisfies

∥Θ̃−Θ∗∥∞ = Õ

(
r2
√

K

Nn

)
,
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with probability at least 1−(3N+3K+5)exp(−α) for any α> 0, where λ= cλ(α+log(N+K))/
√
n

for some positive constant cλ.

The proof is provided in Appendix C. According to Theorem 3, the entry-wise estimation error

∥Θ̃−Θ∗∥∞ for the enhanced estimator Θ̃ in our setting is of order Õ(r2
√

K/(nN)). In comparison,

the nuclear norm regularized estimator Θ̂ has no entry-wise guarantee other than a trivial one using

Theorem 1, i.e., ∥Θ̂−Θ∗∥∞ ≤ ∥Θ̂−Θ∗∥F = Õ(rK/
√
n). Thus, our double-enhancement design

saves us a significant factor of
√
NK/r (≪ 1) in the entry-wise error control. As aforementioned

in Section 1.1, some existing literature, such as Chen et al. (2020, 2021), have also derived an

entry-wise error bound. However, their approach exploits the unique property of the independent

sampling scheme, and thus does not apply to our setting with sampling interference. Our double-

enhancement procedure in Algorithm 1 might be of independent interest; it can be readily applied

to enhance existing estimators and obtain entry-wise guarantees in broader sampling schemes,

including the independent sampling scheme in Chen et al. (2020, 2021).

Remark 3. We note that our entry-wise error bound in Theorem 3 also matches its minimax

lower bound up to logarithmic terms and insignificant factors. The proof of an entry-wise minimax

risk is similar to that of our Theorem 2.

5. Online Learning in the Matching Market

In this section, we extend our offline matrix completion approach to the online learning setting,

where a centralized platform needs to learn from adaptively collected data and make sequential

matching decisions with no prior information. We discuss both the optimal matching (Section 5.1)

and the stable matching (Section 5.2). We propose two algorithms respectively that speed up the

learning process by reducing exploration cost, which can be especially useful under short horizons

and in large matching markets.

5.1. Online Optimal Matching

We first discuss an online optimal matching problem, which is usually formulated as a combinatorial

semi-bandit problem in the literature (Gai et al. 2010, Chen et al. 2013, Kveton et al. 2015).

Problem Formulation. Analogous to our offline setting in Section 2.1, we consider a two-sided

matching platform with N worker types and K job types, and Θ∗ ∈RN×K represents their reward

matrix. In each step t of a time horizon T , the platform chooses a matching (an arm) πt =Xt from

the set of all matchings M (defined in (2.1)) based on all historical information, and receives noisy

rewards Yt from all N matched pairs (defined in (2.4)). We want to learn the unknown reward

matrix Θ∗ and maximize the total expected reward in each matching. We compare our policy π

to an optimal matching X∗ that obtains the maximum total reward among all matchings, i.e.,
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X∗ = argmaxX∈M⟨X,Θ∗⟩6. Our goal is to learn a policy π to minimize the cumulative regret over

time

R(T ) =
T∑

t=1

(
⟨X∗,Θ∗⟩− ⟨Xt,Θ

∗⟩
)
, (5.1)

where ⟨X∗,Θ∗⟩− ⟨Xt,Θ
∗⟩ is the regret at time t.

Algorithm Design. We propose a Combinatorial Low-Rank Bandit (CombLRB) algorithm in

Algorithm 2 for the online optimal matching problem. CombLRB exploits the low-rank structure

of the reward matrix Θ∗ to accelerate reward learning in the exploration phase; it incorporates the

nuclear norm regularization approach formulated in Section 3.1. Our algorithm has a two-stage

design of exploration and exploitation. First, it explores for Eh time periods in the early stage.

For each t∈ [Eh], it draws a matching Xt following the uniform distribution Π over M (defined in

Section 2.1). Then, at the end of the exploration, we calculate a nuclear norm regularized estimator

Θ̂ based on the data we have collected in the exploration phase, i.e., {(Xi
t, Y

(i)
t ) | t∈ [Eh], i∈ [N ]}.

Our algorithm identifies a matchingXc ∈M that maximizes the total reward using Θ̂ as a surrogate

for Θ∗, i.e., Xc = argmaxX∈M⟨X, Θ̂⟩. Finally, our algorithm commits to the matching Xc and

keeps playing this arm for the remaining time periods.

Algorithm 2 Combinatorial Low-Rank Bandit (CombLRB)

Inputs: Eh, λ

for t∈ [Eh] do

Choose matching πt =Xt ∼Π

Observe rewards Y
(i)
t = ⟨Xi

t,Θ
∗⟩+ ε

(i)
t for all i∈ [N ]

end for

Calculate Θ̂ in (3.1) using the data {(Xi
t, Y

(i)
t ) | t∈ [Eh], i∈ [N ]}

Compute Xc = argmaxX∈M⟨X, Θ̂⟩

for t∈ [T ] \ [Eh] do

Choose matching πt =Xc

end for

Our next theorem provides a regret upper bound on our CombLRB Algorithm in the online

optimal matching setting.

Theorem 4. The regret of CombLRB in Algorithm 2 has

E[R(T )] = Õ
(
r(N +K)T 2/3

)
,

6 Given Θ∗, X∗ can be efficiently calculated by many well-established algorithms such as Hungarian algorithm (Kuhn
1955) and Munkres algorithm (Munkres 1957).
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where Eh =O(rT 2/3) and λ= cλσ log(N(N +K)T )/
√
Eh for some positive constant cλ.

We provide a proof in Appendix D. We compare the regret bound of our approach with that

of a state-of-the-art CUCB algorithm Kveton et al. (2015). CUCB builds on the upper confidence

bound insight from the bandit literature and estimates each matrix entry using its sample average

individually. In other words, CUCB does not exploit the low-rank structure of the rewards and thus

cannot gain efficiency through information sharing as we do. This approach yields a regret upper

bound of Õ(
√
N 2KT ). In contrast, our CombLRB algorithm achieves an improved regret bound for

short time horizon T or large market with large values of N and K. Specifically, when T =O(K3),

our bound is strictly better than that of CUCB since we obtain a favorable dependency on the

matrix dimensions N and K. Indeed, the low-rankness of the reward matrix facilitates the reward

learning and hence the matching decisions through only few explorations. It can be especially

helpful for short horizons or high-dimensional contexts, when reward learning is very costly.

It is also worth noting that our algorithm can run for any extremely short time horizon T <K

as well, while CUCB requires at least K initial random matchings for exploration and only works

for relatively long time horizons.

5.2. Online Stable Matching

Next, we discuss an online stable matching problem; our problem setting is the same as that

formulated by Liu et al. (2020).

Problem Formulation. Consider a two-sided platform with N worker types and K job types.

Unlike all previous settings, now the matrix Θ∗ represents the rewards of the worker side, which

further implies the worker preference rankings over jobs. Particularly, its (i, j)th entryΘ∗(i,j) denotes

the reward received by a worker of type i if they are matched with a job of type j. Then, the

preference ranking of worker type i over the K job types is determined by the ith row of Θ∗; that

is, they prefer a job of type j over j′ if Θ∗(i,j) > Θ∗(i,j′). We encode the job side preferences in

columns of another matrix Φ∗ ∈RN×K . The platform initially does not know the worker rewards

(i.e., Θ∗), hence has to learn their preferences online, whereas job preferences (i.e., Φ∗) are known

in advance.

At each time t of a time horizon T , the platform chooses a matching πt =Xt ∈M and observes

the noisy rewards Yt received by the N worker types formulated by (2.4). We want to learn

the unknown matrix Θ∗ of worker preferences and find the worker-optimal stable matching X∗;

particularly, X∗ is the stable matching returned by the Gale-Shapley (GS) Algorithm (Gale and

Shapley 1962) when the workers are the proposing side. We note that X∗ is optimal among all
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stable matchings S (⊆M) for all worker types (Knuth 1997), i.e., ⟨X∗i,Θ∗⟩ ≥ ⟨Xi,Θ∗⟩,∀X ∈ S

with Xi defined in (2.2). We design a policy π to minimize the worker-optimal stable regret

Ri(T ) =
T∑

t=1

(
⟨X∗i,Θ∗⟩− ⟨Xi

t,Θ
∗⟩
)
, (5.2)

for every worker i∈ [N ], where ⟨X∗i,Θ∗⟩− ⟨Xi
t,Θ

∗⟩ is the regret for workers of type i at time t.

Algorithm Design. We develope a Competing Low-Rank Bandit (CompLRB) algorithm as in

Algorithm 3. The design of CompLRB closely follows our CombLRB algorithm for online optimal

matching but with two distinctions. Note that the regret (5.2) captures the entry-wise value dif-

ference of Θ∗, and thus can be bounded more tightly using the enhanced estimator Θ̃ from our

double-enhancement procedure in Section 4.1. Additionally, since our goal is to find an optimal

policy among stable matchings, our algorithm identifies a worker-optimal stable matching Xc using

GS algorithm based on Θ̃ and Φ∗.

Algorithm 3 Competing Low-Rank Bandit (CompLRB)

Input: Eh, λ, Φ
∗

for t∈ [Eh] do

Choose matching πt =Xt ∼Π

Observe rewards Y
(i)
t = ⟨Xi

t,Θ
∗⟩+ ε

(i)
t for all i∈ [N ]

end for

Calculate Θ̃ in Algorithm 1 using the data {(Xi
t, Y

(i)
t ) | t∈ [Eh], i∈ [N ]}

Compute a stable matching Xc via GS algorithm with inputs Θ̃ and Φ∗

for t∈ [T ] \ [Eh] do

Choose matching πt =Xc

end for

We state the regret upper bound of our CompLRB algorithm for online stable matching as follows.

Theorem 5. Let ∆min =mini∈[N ]{minj ̸=j′ |Θ∗(i,j) −Θ∗(i,j′)|}. Then, the regret of CompLRB in

Algorithm 3 for worker type i has

E[Ri(T )] =O
(
r3Kmax{log2[(N +K)T ], r log[(N +K)T ]}

N∆2
min

)
,

where Eh =O
(

r3Kmax{log2[(N+K)T ],r log[(N+K)T ]}
N∆2

min

)
and λ = cλσ log

[
(N +K)(3N + 3K + 5)T

]
/
√
Eh

for some positive constant cλ.
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We provide a proof in Appendix E. In comparison, Liu et al. (2020) provide an upper bound

of O(K log(NT )/∆2
min) for any worker type i ∈ [N ]. Our regret bound improves upon that in Liu

et al. (2020) in the matrix dimensions N and K by a factor of at least N/r4 up to logarithmic terms

(recall that N ≫ r). Specifically, our algorithm exploits the tightness of the enhanced low-rank esti-

mator on entry-wise errors, and achieves an improved performance through reduced explorations.

Instead, the algorithm in Liu et al. (2020) estimates every entry of Θ∗ using a naive sample average

estimate. Our theoretical result shows that CompLRB can be very useful for large markets with

many participants, i.e., large N and K.

Remark 4. In practice, the job side preferences, i.e., Φ∗, might be unknown to the matching

platform as well. Then, we need to learn both matrices Θ∗ and Φ∗ online. Our algorithm can be

easily adapted to this setting, and will result in a regret bound of the same scale as in Theorem 5.

6. Experiments

We now demonstrate the practical relevance and effectiveness of our proposed approaches in both

offline and online settings using synthetic data and real data of labor market.

In the offline setting, we compare the following methods: (i) Low Rank: the nuclear norm regular-

ization approach we propose, and (ii) Naive: an entry-wise sample-average estimator. In the online

setting, we compare the following online optimal matching algorithms: (i) CombLRB: combinatorial

low-rank bandit algorithm we propose, (ii) CUCB: combinatorial upper confidence bound algo-

rithm developed by (Chen et al. 2013), and (iii) CTS: combinatorial thompson sampling proposed

by (Wang and Chen 2018). For online stable matching, we compare the following algorithms: (i)

CompLRB: competing low-rank bandit algorithm we propose, and (ii) CompB: competing bandit

algorithm proposed by Liu et al. (2020).

6.1. Synthetic Data

Offline Matching Data. We synthetically generate the matching reward matrix Θ∗, and the

details are provided in Appendix G.1. Figure 3 shows the relative estimation errors of learning

the matching reward matrix Θ∗ in Frobenius norm and entry-wise norm respectively. The relative

estimation error of a specified norm is equal to the estimation error of the matrix in that norm

divided by the specified norm of the ground-truth matrix Θ∗.

We find that our proposed estimator Low-Rank substantially outperforms the benchmarks in

both Frobenius norm and infinity norm. The entry-wise sample-average estimator Naive takes the

entry-wise empirical mean as estimates for observed entries, and the average of observations from

the same row for unobserved entries. Thus, Naive does not fully utilize the low-rank structure of the

reward matrix, and might introduce additional bias for unobserved entries. Instead, our approach

captures the low-rank structure of Θ∗ efficiently, and thus delivers much smaller estimation errors
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through shared information across entries. Our results are consistent over varying matching sample

size n. Matching our theory, the estimation error of Low-Rank decreases with increasing sample

size; in contrast, Naive converges slowly due to insufficient samples entry-wise and potential bias

for unobserved entries.
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Figure 3 Relative estimation errors of the matching reward matrix Θ∗ in Frobenius norm (left) and infinity

norm (right) averaged over 50 trials. Error bars represent 95% confidence intervals. We consider N = 100 worker

types, K = 100 job types, and the matrix rank r= 3. Sample size on the x-axis refers to the number of matchings

n. ‘Low-Rank’ represents our nuclear norm regularization approach.

Online Matching Algorithms. Figure 4 compares the cumulative regrets over varying time

horizon T for optimal matching (Figure 4a) and stable matching (Figure 4b) respectively. Appendix

G.1 provides more details.

Similar to the offline setting, we find in Figure 4a that our low-rank approach CombLRB signifi-

cantly outperforms other benchmarks for optimal matching. CUCB and CTS are based on the ideas

of upper confidence bound and Thompson sampling; they do not exploit the low-rank structure but

instead learn the true reward of each arm individually. Thus, these algorithms cannot efficiently

learn and identify the optimal matching given relatively short time horizons.

Figure 4b similarly shows that our algorithm CompLRB achieves much smaller cumulative regret

for stable matching over other benchmarks. Note that here we consider the worst-case scenario with

“maximum regret” — i.e., we compare the maximum of the N per-worker cumulative regrets for

different algorithms. Since our algorithm has better performance in maximum regret, our algorithm

also obtains a significant improvement over other benchmarks in total cumulative regrets of all

workers in the market. As expected, our CompLRB obtains such an improvement through leveraging

the underlying low-rank structure of the worker reward matrix, compared to CompB, which uses

sample average to estimate the worker rewards and hence worker preferences.
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Figure 4 Regret for optimal matching (left) and maximum per-worker regret for stable matching (right)

averaged over 50 trials. Error bars represent 95% confidence intervals. We consider N = 100 worker types,

K = 100 job types, and the matrix rank r= 3. ‘CombLRB’ and ‘CompLRB’ represent our combinatorial low-rank

bandit algorithm and competing low-rank bandit algorithm respectively.

In summary, the empirical results obtained from synthetic experiments align with our theory,

given the low-rank nature of the true reward matrix. Next, we further explore the robustness of

our algorithms on a real data, where the low-rank assumption might not hold.

6.2. Real Data of Labor Market

We further evaluate the real-world performance of all our approaches on one of the largest workforce

dataset provided by Revelio Lab7, which collects matching information for a diverse set of job

and candidate profiles. We use a subset of the individual-level data of employment duration of

mid-level software engineers in the United States from 2010 to 2015. In this experiment, we cluster

the engineers (i.e., the workers) and companies (i.e., the jobs) into 50 groups respectively, i.e.,

N = K = 50. Then, we create the true reward matrix Θ∗, where the value of each entry takes

the average of an indicator of whether an employment exceeds six months over all workers who

belong to the corresponding worker and job group. That is, the (i, j)th entry Θ∗(i,j) represents the

probability of a worker employment from group i lasting long than six months in a company from

group j. Intuitively, we measure the matching reward by the worker satisfaction; the higher the

probability is, the more satisfied the worker is with the corresponding company.

It is worth noting that, in this real-world setting, our reward matrix might not satisfy the low-

rank assumption, which is different from our synthetic experiments with low-rankness imposed.

The details of data pre-processing and experimental setup are provided in Appendix G.2.

Offline Matching Data. Figure 5 presents the results of an offline reward learning experiment

on our real data of labor market. The results again exhibit the superb performance of our low-rank

7 See https://wrds-www.wharton.upenn.edu/pages/about/data-vendors/revelio-labs/.

https://wrds-www.wharton.upenn.edu/pages/about/data-vendors/revelio-labs/
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matrix completion approach, similar to our synthetic experiments. Notably, our approach improves

upon the best benchmark in the Frobenius norm and entry-wise norm by 44% and 43% respectively

on average across all different sample sizes. Basically, our approach can learn the worker satisfaction

with only few samples, and thus gain early insights into a company’s employment condition.
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Figure 5 Relative estimation errors of the matching reward matrix Θ∗ in Frobenius norm (left) and infinity

norm (right) averaged over 50 trials. Error bars represent 95% confidence intervals. We consider N = 50 worker

types, and K = 50 job types. Sample size on the x-axis refers to the number of matchings n. ‘Low-Rank’

represents our nuclear norm regularization approach.

Online Matching Algorithms. We also aim to learn the matching decisions directly in an

online manner through our matrix completion approach. Note that the total number of rewards

(i.e., N×K = 2500) to learn is much larger than the time horizon T considered in our experiments;

that is, we have relatively short time horizons and large matching markets.

The results are presented in Figure 6. Figure 6a shows that, even when the reward matrix might

not be low-rank, our CombLRB algorithm outperforms other two benchmark algorithms CUCB and

CTS over varying time horizons for online optimal matching. Specifically, CombLRB improves on

the regret by 41% compared to the best performing CTS among the benchmarks. Figure 6b further

confirms the efficiency of using low-rank matrix completion in the online stable matching setting.

Our algorithm CompLRB beats the benchmark algorithm by 36% on average across all different

time horizons.

7. Conclusion

In this paper, we focus on efficiently learning matching qualities from a small amount of offline

matching data for large-scale centralized matching platforms. Motivated by the natural low-rank

matrix structure of two-sided markets, we utilize a matrix completion approach via nuclear norm
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Figure 6 Regret for optimal matching (left) and maximum per-worker regret for stable matching (right)

averaged over 50 trials. Error bars represent 95% confidence intervals. We consider N = 50 worker types, and

K = 50 job types. ‘CombLRB’ and ‘CompLRB’ represent our combinatorial low-rank bandit algorithm and

competing low-rank bandit algorithm respectively.

regularization to estimate the matching rewards efficiently. To the best of our knowledge, we pro-

pose the first matrix completion framework to address a reward learning problem in the matching

setting. Our matching problem involves a challenging dependent sampling scheme due to matching

interference; we develop a new proof strategy based on a linearization trick and establish a near-

optimal error bound in Frobenius norm. Furthermore, we propose a novel double-enhancement pro-

cedure that refines entry-wise estimation atop the nuclear norm regularized estimates and ensures

an entry-wise guarantee. In the online setting, we propose two algorithms CombLRB and CompLRB

to efficiently learn optimal matching and stable matching policies respectively, thereby improving

regret bounds in the matrix dimensions. Finally, our empirical experiments show that our matrix

completion approach can indeed boost both offline reward learning and online decision making in

the matching problems. Both our theoretical and empirical findings underscore the importance of

adopting matrix completion methods in matching markets.
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Appendix A: Proof of Theorem 1

A.1. Major Steps of the Proof

Our proof strategy is adapted from the three steps in the proof of Theorem 2 in Athey et al. (2021) (see

Remark 6.4 of Athey et al. (2021) for more details). We summarize our three steps in Lemma A.1, Lemma

A.2 and Proposition 1 (stated in Section 3.2) respectively. For simplicity, we define ∆ =Θ∗ − Θ̂, and let

C=
∑n

t=1

∑N
i=1 ε

(i)
t Xi

t.

The operator norm of the noise matrix C indicates the “scale” of the noises; the larger the operator norm,

the higher the noise level. Lemma A.1 upper bounds the error “collected” by Xt for deterministic C. As long

as the regularized hyperparameter λ take a sufficiently large value, the error collected by Xt can be upper

bounded with respect to the corresponding error term’s Frobenius norm.

Lemma A.1. For any λ≥ 3∥C∥op/n, we have∑n
t=1

∑N
i=1⟨Xi

t,∆⟩2

n
≤ 4λ

√
r∥∆∥F .

Next, Lemma A.2 provides a probabilistic bound on the operator norm of the noise matrix C. In other

words, the condition λ ≥ 3∥C∥op/n in Lemma A.1 holds with high probability, given our choice of λ in

Theorem 1. Similar to Proposition 1, the key challenge of Lemma A.2 lies in the dependent structure of the

observational data.

Lemma A.2. Suppose
√
n≥max{α, log(NKn2)}. Then, there exists a constant c1 such that

∥C∥op ≤ c1σ
(
α+ log(N +K)

)√
n

with probability greater than 1− 3exp(−α) for any α> 0.

As summarized before, our last step will be the RSC condition previously mentioned in Proposition 1.

With these three steps, we are now ready to prove Theorem 1.

A.2. Proof of Theorem 1

Proof of Theorem 1. By the constraint in (3.1), the rank of Θ̂ is less than or equal to r. Since rank(Θ∗)≤

r, it is straightforward to see that rank(∆)≤ 2r.

First note that if ∥∆∥2F ≤ c0NKα/n, then our argument goes. Otherwise, since ∥∆∥2L2(Π) = ∥∆∥2F /K >

c0Nα/n, by the definition of the set Cα(2r) in Proposition 1, we have 1
2
∆ ∈ Cα(2r). Then we can apply

Proposition 1 and have with probability greater than 1− exp(−α) that,

1

n

n∑
t=1

N∑
i=1

〈
Xi

t,
1

2
∆
〉2

> c2

∥∥∥∥12∆
∥∥∥∥2
L2(Π)

− c3

(
r2K log[(N +K)n]

n

)
. (A.1)

By Lemma A.2 and our choice of λ= cλσ
α+log(N+K)√

n
where cλ is large enough, we have λ≥ 3∥C∥op/n holds

with probability greater than 1− 3exp(−α). Then by Lemma A.1, we have

1

n

n∑
t=1

N∑
i=1

⟨Xi
t,∆⟩2 ≤ 4λ

√
r∥∆∥F =

4cλσ
√
r
(
α+ log(N +K)

)
√
n

∥∆∥F (A.2)
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with probability higher than 1−3exp(−α). By combining (A.1) and (A.2), we obtain with probability greater

than 1− 4exp(−α) that,

c2∥∆∥2L2(Π) − 4c3

(
r2K log[(N +K)n]

n

)
≤ 4cλσ

√
r (α+ log(N +K))√

n
∥∆∥F . (A.3)

On the RHS, the basic inequality yields that

4cλσ
√
r
(
α+ log(N +K)

)
√
n

∥∆∥F ≤ c2
2K

∥∆∥2F +
8Kc2λσ

2r
(
α+ log(N +K)

)2
c2n

.

On the LHS, we have

∥∆∥2L2(Π) =E

[
N∑
i=1

⟨Xi
t,∆⟩2

]
=

∥∆∥2F
K

.

Plugging the above into (A.3), we have

c2∥∆∥2L2(Π) − 4c3

(
r2K log[(N +K)n]

n

)
= c2

∥∆∥2F
K

− 4c3

(
r2K log[(N +K)n]

n

)
≤ c2

2K
∥∆∥2F +

8Kc2λσ
2r
(
α+ log(N +K)

)2
c2n

.

Rearranging the above inequality gives us

c2
2K

∥∆∥2F ≤ 4c3

(
r2K log[(N +K)n]

n

)
+

8Kc2λσ
2r
(
α+ log(N +K)

)2
c2n

,

thus

∥∆∥2F ≤ 8c3r
2K2 log[(N +K)n]

c2n
+

16K2c2λσ
2r
(
α+ log(N +K)

)2
c22n

.

So (A.3) implies that

∥∆∥F√
NK

≤ c4max

{
cλσ (α+ log(N +K))

√
rK

Nn
, r

√
K log[(N +K)n]

Nn

}
, (A.4)

where c4 is a universal constant that depends on c2 and c3. Since (A.3) holds with probability greater than

1− 4exp(−α), our argument goes. □

A.3. Proof of Lemma A.1

Proof of Lemma A.1. By (3.1) we have

1

n

n∑
t=1

∥Yt −Xt

(
Θ̂
)
∥2 +λ∥Θ̂∥∗ ≤

1

n

n∑
t=1

∥Yt −Xt(Θ
∗)∥2 +λ∥Θ∗∥∗,

which implies

1

n

n∑
t=1

∥Yt −Xt(Θ̂)∥2 − 1

n

n∑
t=1

∥Yt −Xt(Θ
∗)∥2 ≤ λ∥Θ∗∥∗ −λ∥Θ̂∥∗. (A.5)

By the definition of Xt, we have

Yt −Xt(Θ̂) = Yt −Xt(Θ
∗)+Xt(Θ

∗)−Xt(Θ̂)

= Yt −Xt(Θ
∗)+Xt(∆).
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Then

1

n

n∑
t=1

∥Yt −Xt(Θ̂)∥2 − 1

n

n∑
t=1

∥Yt −Xt(Θ
∗)∥2

=
1

n

n∑
t=1

∥Yt −Xt(Θ
∗)+Xt(∆)∥2 − 1

n

n∑
t=1

∥Yt −Xt(Θ
∗)∥2

=
2

n

n∑
t=1

⟨Yt −Xt(Θ
∗),Xt(∆)⟩+ 1

n

n∑
t=1

∥Xt(∆)∥2.

By (2.4), we have

Yt −Xt(Θ
∗) =

[
ε
(1)
t ε

(2)
t · · · ε(N)

t

]
.

Then by the definition of the noise matrix C,

n∑
t=1

⟨Yt −Xt(Θ
∗),Xt(∆)⟩=

n∑
t=1

N∑
i=1

ε
(i)
t ⟨Xi

t,∆⟩

=

n∑
t=1

N∑
i=1

⟨ε(i)t Xi
t,∆⟩

=

〈
n∑

t=1

N∑
i=1

ε
(i)
t Xi

t,∆

〉
= ⟨C,∆⟩.

Plugging the above into (A.5) yields that
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n

n∑
t=1

⟨Yt −Xt(Θ
∗),Xt(∆)⟩+ 1

n

n∑
t=1

∥Xt(∆)∥2 = 2

n
⟨C,∆⟩+ 1

n

n∑
t=1

∥Xt(∆)∥2

=
2

n
⟨C,∆⟩+ 1

n

n∑
t=1

N∑
i=1

⟨Xi
t,∆⟩2 ≤ λ∥Θ∗∥∗ −λ∥Θ̂∥∗

where the second equality is given by the definition of Xt. Then by λ≥ 3∥C∥op/n, the above inequality gives

1

n

n∑
t=1

N∑
i=1

⟨Xi
t,∆⟩2 ≤− 2

n
⟨C,∆⟩+λ∥Θ∗∥∗ −λ∥Θ̂∥∗

≤ 2

n
∥∆∥∗∥C∥op +λ∥∆∥∗

≤ 5

3
λ∥∆∥∗. (A.6)

In Section A.2 we have shown that rank(∆) ≤ 2r. Then we can derive the following inequality: ∥∆∥∗ ≤
√
2r∥∆∥F . By substituting this inequality into the previous inequality (A.6), we obtain:

1

n

n∑
t=1

N∑
i=1

⟨Xi
t,∆⟩2 ≤ 4λ

√
r∥∆∥F .

Since ∆=Θ∗ − Θ̂, our argument goes. □

A.4. Proof of Lemma A.2

Proof of Lemma A.2. For every t∈ [n], define

Bt =

N∑
i=1

ε
(i)
t Xi

t.
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Thus we have C=
∑n

t=1Bt, E[Bt] = 0, and each Bt is independent. Let ϑ= σ
√
2 log

(
NKn

)
+2α. For each

t∈ [n] and i∈ [N ] define the truncation of ε
(i)
t as ε̄

(i)
t = ε

(i)
t 1{|ε(i)t | ≤ ϑ}. Also define

B̄t =

N∑
i=1

ε̄
(i)
t Xi

t.

Notice that for any γ ≥ 0,

P[∥C∥op ≥ γ+ϑ] = P
[∥∥∥ n∑

t=1

Bt

∥∥∥∥
op

≥ γ+ϑ
]

≤ P
[∥∥∥ n∑

t=1

B̄t

∥∥∥
op

≥ γ

]
+P
[ n⋃

t=1

N⋃
i=1

{|ε(i)t |>ϑ}
]
. (A.7)

Since ε
(i)
t are σ-subgaussian noises (defined in Definition 1), we have

P
[ n⋃

t=1

N⋃
i=1

{|ε(i)t |>ϑ}
]
≤

n∑
t=1

N∑
i=1

P
[
|ε(i)t |>ϑ

]
≤Nn · 2exp

(
−ϑ2

2σ2

)
= 2exp(−α) ·K−1 ≤ 2exp(−α). (A.8)

Next, we provide an upper bound for P
[∥∥∥∑n

t=1 B̄t

∥∥∥
op

≥ γ

]
. For each t∈ [n], define

Gt = B̄t −
N∑
i=1

E[ε̄(i)t ]Xi
t.

Then ∥∥∥ n∑
t=1

B̄t

∥∥∥∥
op

=
∥∥∥ n∑

t=1

(
Gt +

N∑
i=1

E[ε̄(i)t ]Xi
t

)∥∥∥∥
op

≤
∥∥∥ n∑

t=1

Gt

∥∥∥
op

+
∥∥∥ n∑

t=1

N∑
i=1

E[ε̄(i)t ]Xi
t

∥∥∥
op

≤
∥∥∥ n∑

t=1

Gt

∥∥∥
op

+
∥∥∥ n∑

t=1

N∑
i=1

E[ε̄(i)t ]Xi
t

∥∥∥
F

≤
∥∥∥ n∑

t=1

Gt

∥∥∥
op︸ ︷︷ ︸

=h0

+
√
NK

∥∥∥ n∑
t=1

N∑
i=1

E[ε̄(i)t ]Xi
t

∥∥∥
∞︸ ︷︷ ︸

=h1

. (A.9)

For the term h1 on the RHS, we have

h1 =
√
NK

∥∥∥ n∑
t=1

N∑
i=1

E[ε̄(i)t ]Xi
t

∥∥∥
∞

≤
√
NK

n∑
t=1

∥∥∥ N∑
i=1

E[ε̄(i)t ]Xi
t

∥∥∥
∞

≤
√
NKn max

i∈[N ],t∈[n]
|E[ε̄(i)t ]|.

Since E[ε(i)t ] = 0, we have for any t∈ [n], i∈ [N ]∣∣E[ε̄it]∣∣= ∣∣∣∣E[εit1{|ε(i)t | ≤ ϑ}
]∣∣∣∣= ∣∣∣∣E[ε(i)t 1{|ε(i)t |>ϑ}

]∣∣∣∣
≤
√
E
[
(ε

(i)
t )2

]
P[|ε(i)t |>ϑ]

≤
√
2σ2 exp

[
−ϑ2/(2σ2)

]
=

√
2σ exp(−α/2)√

NKn
≤

√
2σ√

NKn
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where the last inequality is given by α> 0. Thus

h1 ≤
√
NKn max

i∈[N ],t∈[n]
|E[ε̄(i)t ]| ≤

√
2σ. (A.10)

Now we will bound the term h0 via matrix Berstein inequality. First, we provide an upper bound for ∥Gt∥op
and

σ2
Z =max

{∥∥∥∥E[ n∑
t=1

GtG
⊤
t

]∥∥∥∥
op

,

∥∥∥∥E[ n∑
t=1

G⊤
t Gt

]∥∥∥∥
op

}
.

We have the following lemma which is proved at the end of this subsection:

Lemma A.3. We have

∥Gt∥op ≤ 2ϑ,∀t∈ [n], and σ2
Z =max

{∥∥∥∥E[ n∑
t=1

GtG
⊤
t

]∥∥∥∥
op

,

∥∥∥∥E[ n∑
t=1

G⊤
t Gt

]∥∥∥∥
op

}
≤ nσ2.

Due to the special dependent structure we have under the matching sampling scheme, this crucial lemma

sets us apart from Lemma 2 in Athey et al. (2021), where their σ2
Z is of order O(n

√
K) given their dependent

structure.

Given Lemma A.3, we can bound h0 via Lemma F.1. By Lemma F.1, for any γ > 0,

P
[
h0 ≥ γ

]
= P

[∥∥∥ n∑
t=1

Gt
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op

≥ γ

]
≤ (N +K) exp

{ −γ2

2σ2
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}
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}
.

By choosing

γ ≥max
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√
n
√
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8ϑ

3

(
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,

we have
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2nσ2 +(4ϑγ)/3

}
= (N +K) exp

{ −γ2

2
− γ2

2
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}
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)
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Since

8ϑ

3

(
α+ log(N +K)

)
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8
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)
,

which yields that

P
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n+α+ log(NKn2)
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≤ exp(−α).
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Combining with (A.9) and h1 ≤
√
2σ in (A.10) gives us

P

[∥∥∥ n∑
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B̄t
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op
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)
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By (A.7) and (A.8), we have that, with probability larger than 1− 3exp(−α),
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) (√
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n

where the last inequality is given by
√
n≥max{α, log(NKn2)}, which completes the proof. □

Proof of Lemma A.3 Given any t∈ [n], we can write Gt as

Gt = B̄t −
N∑
i=1

E[ε̄(i)t ]Xi
t =

N∑
i=1

ε̃
(i)
t Xi

t,

where ε̃
(i)
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t −E[ε̄(i)t ]. We first bound ∥Gt∥op. By the definition of ε̃
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t and that ε̃
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t are independent with
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.

We can then treat
∑N

i=1X
i
t as a binary matrix obtained by permuting the columns of a binary diagonal

matrix in RN×K . Since the norm of a matrix does not depend on the column order, we have
∥∥∥∑N

i=1X
i
t
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op

= 1

and thus ∥Gt∥op ≤ 2ϑ. By an analogous argument, we can also bound σ2
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Notice that for any i ̸= k, we have Xi
tX

k⊤
t = 0. Additionally, for any realization of Xt, we have

N∑
i=1

Xi
tX

i⊤
t =

N∑
i=1

ei(N)e⊤jt(i)(K)ejt(i)(K)e⊤i (N)

=

N∑
i=1

ei(N)e⊤i (N)

= IN×N .

Thus ∥∥∥∥∥
N∑
i=1

Xi
tX

i⊤
t

∥∥∥∥∥
op

= 1, (A.11)

and ∥∥∥∥∥
N∑
i=1

Xi⊤
t Xi

t

∥∥∥∥∥
op

= 1. (A.12)

Then

GtG
⊤
t =

N∑
i=1

N∑
k=1

ε̃
(i)
t ε̃

(k)
t Xi

tX
k⊤
t =

N∑
i=1

(ε̃
(i)
t )2Xi

tX
i⊤
t
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and

E
[
∥GtG

⊤
t ∥op

]
=E

[∥∥∥ N∑
i=1

(ε̃
(i)
t )2Xi

tX
i⊤
t

∥∥∥
op

]

≤ max
i∈[N ]

{
E[(ε̃(i)t )2]

}
E

[∥∥∥ N∑
i=1

Xi
tX

i⊤
t

∥∥∥
op

]

≤ σ2E

[∥∥∥ N∑
i=1

Xi
tX

i⊤
t

∥∥∥
op

]
≤ σ2,

where the first inequality is due to that ε̃
(i)
t and Xi

t are independent with each other, the second inequality

is given by E[(ε̃(i)t )2]≤E[(ε̄(i)t )2]≤E[(ε(i)t )2]≤ σ2. Similarly we have E
[
∥G⊤

t Gt∥op
]
≤ σ2. Thus,

σ2
Z ≤ nmax

t∈[n]
{E[∥GtG

⊤
t ∥op],E[∥G⊤

t Gt∥op]} ≤ nσ2. □

A.5. Proof of Proposition 1

Proof of Proposition 1. Recall that, for any t∈ [n],

Xt =

N∑
i=1

Xi
t. (A.13)

We will prove Proposition 1 by a standard peeling argument. Let

wζ = sup
∆∈Cα(r,ζ)

∣∣∣∣∣ 1n
n∑

t=1

N∑
i=1

⟨Xi
t,∆⟩2 −∥∆∥2L2(Π)

∣∣∣∣∣ ,
where

Cα(r, ζ) =
{
∆∈ Cα(r)

∣∣∣∣ ζ2 ≤ ∥∆∥2L2(Π) < ζ

}
.

First notice that
n∑

t=1

N∑
i=1

⟨Xi
t,∆⟩2 =

n∑
t=1

⟨Xt,∆ ◦∆⟩. (A.14)

Then by Lemma F.2, we have

P
[
wζ > 2E[wζ ] +

7ζ

24

]
≤ exp

(
− nζ

288N

)
(A.15)

since

Cα(r, ζ)⊆
{
∆∈ Cα(r)

∣∣∣∥∆∥2L2(Π) < ζ
}
,

Now we provide an upper bound for E[wζ ]. For t∈ [n], let ξt be independent Rademacher random variables.

By the symmetrization inequality,

E[wζ ] =E

[
sup

∆∈C(r,ζ)

∣∣∣∣∣ 1n
n∑

t=1

N∑
i=1

⟨Xi
t,∆⟩2 −∥∆∥2L2(Π)

∣∣∣∣∣
]

≤ 2E
[

sup
∆∈C(r,ζ)

1

n

n∑
t=1

ξt(

N∑
i=1

⟨Xi
t,∆⟩2)

]
= 2E

[
sup

∆∈C(r,ζ)

1

n

n∑
t=1

ξt⟨Xt,∆ ◦∆⟩
]

= 2E
[

sup
∆∈C(r,ζ)

⟨ΣR,∆ ◦∆⟩
]
,
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where ΣR = 1
n

∑n
t=1 ξtXt. Notice that Lemma F.3 gives rank(∆ ◦∆) ≤ r2, and thus we have ∥∆ ◦∆∥∗ ≤√

rank(∆ ◦∆)∥∆∥F ≤
√
r2∥∆∥F . In addition, since ∥∆∥∞ ≤ 1, we have ∥∆ ◦∆∥F ≤ ∥∆∥F . Then it holds

that

E
[

sup
∆∈C(r,ζ)

⟨ΣR,∆ ◦∆⟩
]
≤ sup

∆∈C(r,ζ)
∥∆ ◦∆∥∗E [∥ΣR∥op]

≤ sup
∆∈C(r,ζ)

√
r2∥∆ ◦∆∥FE [∥ΣR∥op]

≤ sup
∆∈C(r,ζ)

√
r2∥∆∥FE [∥ΣR∥op]

= r
√

K∥∆∥2L2(Π)E [∥ΣR∥op]

≤ r
√

KζE [∥ΣR∥op]

≤ 4r2K (E [∥ΣR∥op])2 +
ζ

16
,

where the first inequality is given by the duality between nuclear norm and operator norm (i.e., |⟨P,Q⟩| ≤
∥P∥∗ · ∥Q∥op,∀P,Q∈RN×K). Plugging the above into (A.15) gives us

P
[
wζ > 4r2K (E [∥ΣR∥op])2 +

11ζ

24

]
≤ exp

(
−nζ

288N

)
. (A.16)

Lemma A.4 shows that

E[∥ΣR∥op]≤
6
√
log[(N +K)n]√

n
,

and thus

4r2K
[
E[∥ΣR∥op]

]2 ≤ 144r2K log[(N +K)n]

n
. (A.17)

Now set

φ=
144r2K log[(N +K)n]

n

and define the bad event

B=

{
∃∆∈ Cα(r) s.t.

∣∣∣∣∣ 1n
n∑

t=1

N∑
i=1

⟨Xi
t,∆⟩2 −∥∆∥2L2(Π)

∣∣∣∣∣≥ 11

24
∥∆∥2L2(Π) +φ

}
.

Notice that if event B holds with small probability, then our argument goes. For any l ∈N+, define

Bl =

{
∃∆∈ C

(
r,
576Nα

n
· 2l
)

s.t.

∣∣∣∣∣ 1n
n∑

t=1

N∑
i=1

⟨Xi
t,∆⟩2 −∥∆∥2L2(Π)

∣∣∣∣∣≥ 11

24
∥∆∥2L2(Π) +φ

}
.

According to (A.16) and (A.17), we have

P[Bl]≤ exp
(
− 2α · 2l

)
.

Note that B ⊆
⋃∞

l=1Bl, which implies

P[B]≤
∞∑
l=1

P[Bl]≤
∞∑
l=1

exp
(
− 2α · 2l

)
≤

∞∑
l=1

exp
(
− 2α · l

)
≤ exp(−2α)

1− exp(−2α)
≤ exp(−α). □

Lemma A.4. For any t∈ [n], let ξt be i.i.d. Rademacher random variables and let

ΣR =
1

n

n∑
t=1

ξtXt

where Xt satisfies (A.13). Then we have

E [∥ΣR∥op]≤
6
√
log[(N +K)n]√

n
.
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Proof of Lemma A.4 Our proof techniques rely on the concentration inequality for matrix Rademacher

series in Lemma F.4. Thus we need to first calculate the value of σ2
Z . Our approach is similar to the argument

in the proof of Lemma A.3. First note that∥∥XtX
⊤
t

∥∥
op

=

∥∥∥∥∥
N∑
i=1

N∑
j=1

Xi
tX

j⊤
t

∥∥∥∥∥
op

=

∥∥∥∥∥
N∑
i=1

Xi
tX

i⊤
t

∥∥∥∥∥
op

since Xi
tX

j⊤
t = 0,∀i ̸= j. By (A.11) we have∥∥∥∥∥

n∑
t=1

XtX
⊤
t

∥∥∥∥∥
op

≤ n ·max
t∈[n]

∥XtX
⊤
t ∥op = n.

Similarly by (A.12) we have ∥∥∥∥∥
n∑

t=1

X⊤
t Xt

∥∥∥∥∥
op

≤ n ·max
t∈[n]

∥X⊤
t Xt∥op = n.

By applying Lemma F.4 with σ2
Z = n, we have

P

[∥∥∥ n∑
t=1

ξtXt

∥∥∥
op

≥ ρ

]
≤ (N +K) exp

(
−ρ2

2n

)
,∀ρ> 0.

Set ρ=
√
2n log[(N +K)n3/2] and we obtain

P

[∥∥∥∥ n∑
t=1

ξtXt

∥∥∥∥
op

≥
√

2n log[(N +K)n3/2]

]
≤ 1

n3/2
.

We also have that
∥∥∑n

t=1 ξtXt

∥∥
op

≤ n almost surely. Therefore, we have

E[∥ΣR∥op] =E
[
∥ΣR∥op1

{
∥ΣR∥op ≥

√
2 log[(N +K)n3/2]/n

}]
+E

[
∥ΣR∥op1

{
∥ΣR∥op <

√
2 log[(N +K)n3/2]/n

}]
≤ P

[
∥ΣR∥op ≥

√
2 log[(N +K)n3/2]/n

]
×n+

√
2 log[(N +K)n3/2]/n

≤ 1√
n
+

√
2 log[(N +K)n3/2]√

n
≤ 3

√
log[(N +K)n3/2]√

n
≤

6
√
log[(N +K)n]√

n
. □

Appendix B: Proof of Theorem 2

Proof of Theorem 2. Consider a set {Θ1,Θ2, · · · ,Θn(ς)} where Θi ∈ C,∥Θi∥F ≤ ς,∀i∈ [n(ς)] and ∥Θi −
Θj∥F ≥ ς,∀i ̸= j. We first choose index m ∈ [n(ς)] uniformly at random, and we are given the observations

S = {(Xi
t, Y

(i)
t ), t∈ [n], i∈ [N ]} sampled according to (2.4) with Θ∗ =Θm. Suppose we obtain an estimation

of m by samples in S, denoted by m̂. Then we have

P
[
∥Θ̃−Θ∗∥F ≥ ς

2

]
≥ P[m̂ ̸=m]

by the triangle inequality. The Fano’s inequality (see, e.g., Theorem 9 of Scarlett and Cevher (2019)) yields

that

P[m̂ ̸=m | X1, · · · ,Xn]≥ 1−
maxi,j∈[n(ς)],i ̸=j D(Θi ∥Θj)+ log 2

log
(
n(ς)

) , (B.1)

where D(Θi ∥Θj) is the KL divergence between the distributions of

(Y1, Y2, · · · , Yn | X1, · · · ,Xn,Θi) and (Y1, Y2, · · · , Yn | X1, · · · ,Xn,Θj).
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For Gaussian noises with variance σ2, we have, for any i ̸= j,

D(Θi ∥Θj) =
1

2σ2

n∑
t=1

∥Xt(Θi)−Xt(Θj)∥2

and thus

E[D(Θi ∥Θj)] =
n

2Kσ2
∥Θi −Θj∥2F

where the expectation is taken over (X1, · · · ,Xn). Then by (B.1), we have

P[m̂ ̸=m]≥ 1−
n

2Kσ2 ∥Θi −Θj∥2F + log 2

log
(
n(ς)

)
≥ 1−

2nς2

Kσ2 + log 2

log
(
n(ς)

)
where the last inequality is given by ∥Θi −Θj∥F ≤ ∥Θi∥F + ∥Θj∥F ≤ 2ς. By the proof of Theorem 5 in

Koltchinskii et al. (2011), for any constant 0<υ≤ 1, when

ς = υ(σ ∧ 1)

√
rK2

n
,

there exists {Θ1,Θ2, · · · ,Θn(ς)} with n(ς)≥ 2rK/8+1 that satisfies ∥Θi∥F = ς,Θi ∈ C,∀i∈ [n(ς)] and ∥Θi−

Θj∥F ≥ ς,∀i ̸= j. Then choosing υ=
√
log 2/8 yields

P[m̂ ̸=m]≥ 1−
2υ2(σ2∧1)rK2

Kσ2 + log 2
rK log 2

8

≥ 1− 2υ2rK + log 2
rK log 2

8

= 1− rK/4+8

rK
≥ 1

2
,

when rK ≥ 32. Thus, we have

ℓ(Θ∗,∥ · ∥F ) = inf
Θ̃

sup
Θ∗∈C

E
[
∥Θ̃−Θ∗∥F

]
≥ inf

Θ̃
sup
Θ∗∈C

ς

2
P
[
∥Θ̃−Θ∗∥F ≥ ς

2

]
≥ inf

Θ̃

ς

2
P [m̂ ̸=m]

≥ ς

4
=

√
log 2(σ ∧ 1)

8

√
rK2

n
,

which completes our proof.

Appendix C: Proof of Theorem 3

C.1. Major Steps of the Proof

We first define the conditional number for any matrix Θ, as κ= σmax(Θ)/σmin(Θ). The very first step of

our proof will be showing that the number of samples collected for each row and column in the enhancement

procedure is proportional to the total number of enhancement samples n2 = |J2|. To establish this, we let

nmin =min

{
min
i∈[N ]

|Ri|, min
j∈[K]

|Cj |
}

denote the minimum sample size of each row i∈ [N ] and each column j ∈ [K] in the enhancement procedure,

and we have the following lemma which is proved in Appendix C.3:
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Lemma C.1. If

n2 ≥
αK2

N2
,

then

nmin ≥
n2N

2K

with probability greater than 1− exp(−α) for any α> 0.

Given the minimum sample size requirement, we are now able to derive Theorem 3. We break our proof

into two steps.

The first step (Lemma C.2) shows that with sufficient samples at each row and column, the Ũ and Ṽ

returned by the row enhancement procedure in Algorithm 1 will better approximate U∗D∗ and V∗D∗

(recall the SVD Θ∗ =U∗D∗V∗⊤); specifically, the row-wise distance, i.e., ℓ2,∞ norm error, is improved. This

improvement is enabled by two least square regressions in the double-enhancement procedure Algorithm 1.

The proof technique for this lemma is similar to that in Hamidi et al. (2019). However, as aforementioned,

they are only interested in the row-wise error ∥Θ̃ −Θ∗∥2,∞, and hence only discuss how to enhance V̂

to better approximate the row space of Θ∗ but not the column space (i.e., Û). In contrast, our analysis

requires a simultaneous enhancement of both Ṽ and Ũ, which is more involved. The proof of Lemma C.2 is

in Appendix C.4.

Lemma C.2. Suppose there exists ϵf > 0 such that the first stage estimator Θ̂ has∥∥Θ∗ − Θ̂
∥∥
F√

NK
≤ ϵf ≤ ∥Θ∗∥∞

2ηκ
√
r
; (C.1)

besides, assume that the minimum row and column sample size has

nmin ≥
64κ2η2r log r log(N +K)

∥Θ∗∥2∞
. (C.2)

Then, the Ũ, Ṽ returned by Algorithm 1 satisfy

∥Ũ−U∗D∗∥2,∞ ≤

(
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

)
∥U∗D∗∥2,∞,

and

∥Ṽ−V∗D∗∥2,∞ ≤

(
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

)
∥V∗D∗∥2,∞

with probability greater than 1− 3(N +K) exp(−α) for any α> 0.

Under the sample size requirement in Theorem 3, ϵf in the above lemma is of order Õ(r
√

K/Nn) according

to Theorem 1 given our choice of λ, which will be helpful in establishing the condition in our second key

step.

The second step (Lemma C.3) shows that, by setting Θ̃=U1Q1Ṽ
⊤, the entry-wise error ∥Θ̃−Θ∗∥∞ is

controlled by the row-wise bounds ∥Ũ−U∗D∗∥2,∞ and ∥Ṽ−V∗D∗∥2,∞ derived in Lemma C.2. This bound

is deterministic, leading towards our final probabilistic bound in Theorem 3. The proof of Lemma C.3 is

provided in Appendix C.5.
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Lemma C.3. Suppose there exists ϵ < 1/(2
√
rηκ) such that

∥Ũ−U∗D∗∥2,∞ ≤ ϵ∥U∗D∗∥2,∞ and ∥Ṽ−V∗D∗∥2,∞ ≤ ϵ∥V∗D∗∥2,∞. (C.3)

Then, Θ̃=U1Q1Ṽ
⊤ satisfies

∥Θ̃−Θ∗∥∞ ≤ 33ϵ
√
rηκ∥Θ∗∥∞

4
,

where U1,Q1 are from the SVD Ũ=U1D1Q1.

The ϵ in Lemma C.3 exists with probability higher than 1− 3(N +K) exp(−α) for any α> 0 if we set

ϵ=
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

,

according to our results in Lemma C.2. As aforementioned, ϵf is of order Õ(r
√

K/Nn), thus ϵ is of order

Õ(r3/2
√
K/Nn). By Lemma C.3, this yields our final result order of Õ(r2

√
K/Nn).

C.2. Proof of Theorem 3

Proof of Theorem 3. First we provide the explicit form of our condition n= Ω̃(max{(r4K)/N, (K/N)2}) ;
that is,

n≥max

{
2αK2

N2
+1,

256κ2η2rK log r log(N +K)

∥Θ∗∥2∞N
+1,

1800c24c
2
λσ

2η4κ4r3K
(
α+ log(N +K)

)2
N∥Θ∗∥2∞

,

1800c24η
4κ4r4K log[(N +K)n]

N∥Θ∗∥2∞
,
2048ασ2η6κ4r3K

N∥Θ∗∥2∞
+1

}
,

where c4 is the constant from (A.4). This requirement for sample size is to ensure that the conditions in

Lemma C.2 and Lemma C.3 hold with high probability. Specifically, we will show that if the sample size

requirement is met, then

nmin ≥
n2N

2K
≥ (n− 1)N

4K
≥ 64κ2η2r log r log(N +K)

∥Θ∗∥2∞
(C.4)

with probability higher than 1− exp(−α) and

∥Θ∗ − Θ̂∥F√
NK

≤ ϵf ≤ ∥Θ∗∥∞
30rη2κ2

≤ ∥Θ∗∥∞
2ηκ

√
r

(C.5)

with probability higher than 1− 4exp(−α) by choosing

ϵf = c4max

{
cλσ (α+ log(N +K))

√
rK

Nn
, r

√
K log[(N +K)n]

Nn

}
.

We first show (C.4) holds with high probability. By Lemma C.1 and our assumption that

n≥ 256κ2η2rK log r log(N +K)

N∥Θ∗∥2∞
+1,

we immediately have (C.4) holds with probability higher than 1− exp(−α). Then we will show that (C.5)

holds with high probability via Theorem 1. The explicit form of Theorem 1 in (A.4) tells us with probability

higher than 1− 4exp(−α),∥∥Θ∗ − Θ̂
∥∥
F√

NK
≤ c4max

cλσ (α+ log(N +K))

√
rK

Nn1

, r

√
K log[(N +K)n1]

Nn1

 .
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Since

n1 ≥
n

2
≥max

{
900c24c

2
λσ

2η4κ4r3K
(
α+ log(N +K)

)2
N∥Θ∗∥2∞

,
900c24η

4κ4r4K log[(N +K)n]

N∥Θ∗∥2∞

}
,

by choosing

ϵf = c4max

cλσ (α+ log(N +K))

√
rK

Nn1

, r

√
K log[(N +K)n1]

Nn1

 ,

we have ∥∥Θ∗ − Θ̂
∥∥
F√

NK
≤ ϵf ≤ ∥Θ∗∥∞

30rη2κ2
≤ ∥Θ∗∥∞

2ηκ
√
r

with probability higher than 1− 4exp(−α), where the last inequality is given by η,κ, r≥ 1.

By our choice of ϵf and sufficient sample size established in (C.4) and (C.5), we have the conditions in

Lemma C.2 hold. Therefore,

∥Ũ−U∗D∗∥2,∞ ≤

(
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

)
∥U∗D∗∥2,∞

∥Ṽ−V∗D∗∥2,∞ ≤

(
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

)
∥V∗D∗∥2,∞

with probability higher than 1− (3N +3K) exp(−α). This further implies that, as long as

15ϵfκη
√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

≤ 1

2
√
rηκ

, (C.6)

then the condition in Lemma C.3 is satisfied with probability higher than 1−(3N+3K) exp(−α) by choosing

ϵ=
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

.

Now we show that (C.6) holds. By (C.4) and

n≥ 2048ασ2η6κ4r3K

N∥Θ∗∥2∞
+1,

we have

nmin ≥
(n− 1)N

4K
≥ 512ασ2η6κ4r3

∥Θ∗∥2∞
;

Thus, it gives
4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

≤ 1

4
√
rηκ

.

By combining this argument with (C.5), we have

15ϵfκη
√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

≤
15 ∥Θ∗∥∞

30rη2κ2κη
√
r

2∥Θ∗∥∞
+

1

4
√
rηκ

≤ 1

2
√
rηκ

,

which implies that (C.6) holds.

Now by our choice of ϵ, the condition in Lemma C.3 holds with probability higher than 1 − (3N +

3K) exp(−α). We have

ϵ=
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞
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=
15κη

√
r

2∥Θ∗∥∞

c4max

cλσ (α+ log(N +K))

√
rK

Nn1

, r

√
log[(N +K)n1]

Nn1


+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

≤ 15κη
√
r

2∥Θ∗∥∞

(
c4max

{
cλσ (α+ log(N +K))

√
2rK

Nn
, r

√
2K log[(N +K)n1]

Nn

})
+

4
√
2αη2κrσ

∥Θ∗∥2∞

√
4K

N(n− 1)

≤ c5
κηr

∥Θ∗∥∞

(
max

{
cλσ (α+ log(N +K))

√
K

Nn
,

√
rK log[(N +K)n]

Nn

}
+

ησ
√
α

∥Θ∗∥∞

√
K

Nn

)
,

where c5 is an absolute constant. Plugging the above into Lemma C.3 yields

∥Θ̃−Θ∗∥∞

≤ 33ϵ
√
rηκ∥Θ∗∥∞

4

≤ 33
√
rηκ∥Θ∗∥∞

4
· c5

κηr

∥Θ∗∥∞

(
max

{
cλσ (α+ log(N +K))

√
rK

Nn
,

√
rK log[(N +K)n]

Nn

}
+

ησ
√
α

∥Θ∗∥∞

√
K

Nn

)

≤ c6η
2κ2r3/2max

{
cλσ (α+ log(N +K))

√
K

Nn
,

√
rK log[(N +K)n]

Nn
,
ησ

√
α

∥Θ∗∥∞

√
K

Nn

}
, (C.7)

where c6 is an absolute constant.

Since (C.4) and (C.5) hold with probability higher than 1−5exp(−α), we have (C.7) holds with probability

higher than 1− (3N +3K +5)exp(−α), which completes the proof. □

C.3. Proof of Lemma C.1

Proof of Lemma C.1. Let ri = |Ri| and ci = |Cj | where Ri and Cj are set in Algorithm 1 and i∈ [N ], j ∈
[K]. By the definition of matching, we have ri = n2,∀i∈ [N ]. Then, it suffices to show that

min
j∈[K]

cj ≥
N

2Kn2

with high probability. We have for any j ∈ [K],

cj = |{t∈J2, jt(i) = j}|=
∑
t∈J2

∑
i∈[N ]

I{jt(i) = j}.

By our matching structure, for any t ∈ J2,
∑

i∈[N ] I{jt(i) = j} are i.i.d. Bernoulli random variables with

expectation N/K. Then, by Hoeffding inequality, we have

P
[∣∣∣∣cj − n2N

K

∣∣∣∣≥ n2N

2K

]
≤ 2exp

(
−2
(
n2N
2K

)2
n2

)
≤ 2exp

(
−n2N

2

2K2

)
≤ 2exp(−α),

where the last inequality is given by the condition n2 ≥ 2K2α/N2 of this lemma.

C.4. Proof of Lemma C.2

Proof of Lemma C.2. We will prove the result for Ũ, and the result for Ṽ can be obtained via an

analogous argument. We first recall some notations for this proof. We let ei(N) for i ∈ [N ] denote the

canonical basis vector in RN ; that is, ei(N) is a column vector with 1 in the i-th entry and 0 in the other

entries. Similarly, ej(K) for j ∈ [K] denotes the basis vector in RK .

Let β⊤ =U∗(i,·)D∗ = ei(N)⊤U∗D∗ ∈Rr for abbreviation. Recall that in Algorithm 1, we use Ri to denote

{
(
Xi

t, Y
(i)
t

)
| t ∈ J2}, which is a set of enhancement samples from row i. Define ri = |Ri| and index the

elements in Ri as

(Zk, yk), k ∈ [ri].
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Then, define

Z=

 ei(N)⊤Z1

...
ei(N)⊤Zri

∈Rri×K ,

and the response vector

Y =
[
y1 · · · yri

]⊤
.

By (2.4), we have

Y =ZV∗β+ ε,

where ε is a vector in Rri consisting of independent σ-subgaussian noises. Then the solution β̃i in Algorithm 1

is equivalent to

β̃i ∈ argmin
γ∈Rr

∥Y −ZV̂γ∥2. (C.8)

Define

H=ZV̂.

Assume that H⊤H is invertible, which implies that the unique solution for (C.8) is

argmin
γ∈Rr

∥Y −ZV̂γ∥2 =
(
H⊤H

)−1
H⊤Y.

We use β̃ =
(
H⊤H

)−1
H⊤Y to denote this solution for ease of notation. We will show later in (C.11) that

H⊤H is invertible with high probability. Now we proceed to analyze ∥β̃−β∥. We have

β̃ = (H⊤H)−1H⊤Y

= (H⊤H)−1H⊤(ZV∗β+ ε)

= (H⊤H)−1H⊤(ZV̂β+ZV∗β−ZV̂β+ ε)

= (H⊤H)−1H⊤Hβ+(H⊤H)−1H⊤Z(V∗ − V̂)β+(H⊤H)−1H⊤ε

= β+(H⊤H)−1H⊤Z(V∗ − V̂)β+(H⊤H)−1H⊤ε.

So

∥β̃−β∥=
∥∥∥(H⊤H)−1H⊤Z(V∗ − V̂)β+(H⊤H)−1H⊤ε

∥∥∥
≤
∥∥∥(H⊤H)−1H⊤Z(V∗ − V̂)β

∥∥∥+∥∥(H⊤H)−1H⊤ε
∥∥

≤
∥∥(H⊤H)−1H⊤Z

∥∥
op

∥∥∥V∗ − V̂
∥∥∥
op

∥β∥+
∥∥(H⊤H)−1H⊤ε

∥∥
≤
∥∥(H⊤H)−1H⊤Z

∥∥
op︸ ︷︷ ︸

=h1

∥∥V∗ − V̂
∥∥
F

∥∥β∥∥+∥∥(H⊤H)−1H⊤ε
∥∥︸ ︷︷ ︸

=h2

. (C.9)

We first bound h2. We have

h2 =
∥∥∥(H⊤H

)−1
H⊤ε

∥∥∥
≤
∥∥∥(H⊤H

)−1
∥∥∥
op
∥H⊤ε∥

=

∥∥H⊤ε
∥∥

λmin(H⊤H)
. (C.10)
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So we will upper bound h2 by upper bounding H⊤ε and lower bounding λmin(H
⊤H). We will use Lemma F.5

on the norm of the weighted sum of subgaussian vectors to upper bound ∥H⊤ε∥. Notice that

∥H⊤ε∥= ∥ε⊤H∥=

∥∥∥∥∥
ri∑

k=1

ε(k)ei(N)⊤ZkV̂

∥∥∥∥∥
and each random vector ei(N)⊤ZkV̂ ∈ Rr follows an independent and uniform distribution over the set

{ej(K)⊤V̂, j ∈ [K]}, thus ∥ei(N)⊤ZkV̂∥ ≤ ∥V̂∥2,∞,∀k ∈ [ri]. Then by Lemma F.5, we have for any ρ> 0,

P

[∥∥∥∥∥
ri∑

k=1

ε(k)ei(N)⊤ZkV̂

∥∥∥∥∥≥ ρ

]
≤ 2exp

(
−ρ2

2rir∥V̂∥22,∞σ2

)
≤ 2exp

(
−ρ2

2nminr∥V̂∥22,∞σ2

)
where the second inequality is given by the definition nmin =min{mini∈[N ] |Ri|,minj∈[K] |Cj |}. Taking ρ=

σ
√
2rαnmin∥V̂∥2,∞ yields

P
[∥∥H⊤ε

∥∥≥ σ
√
2rαnmin∥V̂∥2,∞

]
≤ 2exp(−α).

We will then use the matrix Chernoff bound in Lemma F.6 to lower bound λmin(H
⊤H). Note that by Weyl’s

inequality (Lemma F.7),

λmin(H
⊤H) = λmin

(
ri∑

k=1

V̂⊤Z⊤
k ei(N)ei(N)⊤ZkV̂

)

≥ λmin

(
nmin∑
k=1

V̂⊤Z⊤
k ei(N)ei(N)⊤ZkV̂

)
.

By our previous argument that each random vector ei(N)⊤ZkV̂ ∈ Rr follows an independent and uniform

distribution over the set {ej(K)⊤V̂, j ∈ [K]}, we have

λmax(V̂
⊤Z⊤

k ei(N)ei(N)⊤ZkV̂) = ∥ei(N)⊤ZkV̂∥2 ≤ ∥V̂∥22,∞,∀k ∈ [ri]

and

λmin

(
E
[
V̂⊤Z⊤

k ei(N)ei(N)⊤ZkV̂
])

= λmin

(
K∑

j=1

1

K
V̂⊤ej(K)ej(K)⊤V̂

)

=
1

K
λmin

[
V̂⊤

(
K∑

j=1

ej(K)ej(K)⊤

)
V̂

]

=
1

K
λmin

(
V̂⊤IK×KV̂

)
=

1

K
λmin(Ir×r) =

1

K
.

Thus, plugging µmin = nmin/K and ω= ∥V̂∥22,∞ into Lemma F.6, we obtain

P

[
λmin

(nmin∑
k=1

V̂⊤Z⊤
k ei(N)ei(N)⊤ZkV̂

)
≤ ρnmin

K

]
≤ r exp

(
−(1− ρ)2nmin

2K∥V̂∥22,∞

)
,∀ρ∈ (0,1).

Then, set ρ= 1/2. If nmin ≥ 8αK∥V̂∥22,∞ log r, we have

P
[
λmin(H

⊤H)≤ nmin

2K

]
≤ P

[
λmin

(
nmin∑
k=1

V̂⊤Z⊤
k ei(N)ei(N)⊤ZkV̂

)
≤ nmin

2K

]

≤ r exp

(
−nmin

8K∥V̂∥22,∞

)
≤ exp(−α), (C.11)
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which implies that H⊤H is invertible with probability higher than 1− exp(−α), and furthermore,

h2 ≤
∥H⊤ε∥

λmin(H⊤H)
≤ σ

√
2rαnmin∥V̂∥2,∞

nmin

2K

=
2Kσ

√
2rα∥V̂∥2,∞√

nmin∥U∗D∗∥2,∞
∥U∗D∗∥2,∞

=
2Kσ

√
2rα∥V̂∥2,∞√

nmin∥Θ∗∥2,∞
∥U∗D∗∥2,∞

≤ 2Kσ
√
2rα∥V̂∥2,∞

√
nmin

∥Θ∗∥F√
N

∥U∗D∗∥2,∞

≤ 2Kσ
√
2rα∥V̂∥2,∞

√
nmin

√
NK∥Θ∗∥∞

η
√
N

∥U∗D∗∥2,∞

=
2ησ

√
2Krα∥V̂∥2,∞√
nmin∥Θ∗∥∞

∥U∗D∗∥2,∞ (C.12)

with probability higher than 1− 3exp(−α), where the second equation is given by (F.1) in Lemma F.8, and

the last inequality is given by Assumption 1. In the following lemma, we provide an upper bound on ∥V̂∥2,∞
and thus nmin ≥ 8αK∥V̂∥22,∞ log r must hold as long as

nmin ≥
64κ2η2r log r log(N +K)

∥Θ∗∥2∞
and ϵf ≤ ∥Θ∗∥∞

2ηκ
√
r
.

Lemma C.4. If

ϵf ≤ ∥Θ∗∥∞
2ηκ

√
r
, (C.13)

then

σmin(Θ̂)≥ 1

2σmin(Θ∗)
, and ∥V̂∥2,∞ ≤ 2κη

∥Θ∗∥∞

√
r

K
.

We leave the proof of this lemma at the end of this subsection. Combining Lemma C.4 and (C.12), when

(C.13) holds, we have

h2 ≤
2ησ

√
2Krα∥V̂∥2,∞√
nmin∥Θ∗∥∞

∥U∗D∗∥2,∞

≤
2ησ

√
2Krα 2κη

∥Θ∗∥∞

√
r
K√

nmin∥Θ∗∥∞
∥U∗D∗∥2,∞

=
4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

∥U∗D∗∥2,∞

with probability higher than 1− 3exp(−α).

The term h1 can be bounded via basic algebra. Notice that

h1 =
∥∥(H⊤H

)−1
H⊤Z

∥∥
op

=
∥∥(H⊤H

)−1
H⊤ZV̂

∥∥
op

=
∥∥(H⊤H

)−1
H⊤H

∥∥
op

= 1,
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where the first equality is due to Lemma F.9. Plugging the above bounds of h1 and h2 into (C.9) gives us

∥β̃−β∥ ≤ h1

∥∥V∗ − V̂
∥∥
F

∥∥β∥∥+h2

≤
∥∥V∗ − V̂

∥∥
F

∥∥β∥∥+h2

(a)

≤ 5∥Θ∗ − Θ̂∥F

(
1

σmin(Θ∗)
+

1

σmin(Θ̂)

)
∥β∥+h2

(b)

≤ 15ϵf
√
NK

2σmin(Θ∗)
∥β∥+h2

(c)

≤ 15ϵfκη
√
r

2∥Θ∗∥∞
∥β∥+h2

≤

(
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

)
∥U∗D∗∥2,∞ (C.14)

with probability higher than 1− 3exp(−α), if (C.1) and (C.2) hold. In detail, (a) is given by Lemma F.10,

(b) is given by (C.1) and Lemma C.4, and (c) is given by (F.2) in Lemma F.8. By our definition, β̃ − β =(
Ũ−U∗D∗

)(i,·)
. Extending (C.14) to every i∈ [N ], we have∥∥∥∥(Ũ−U∗D∗

)(i,·)∥∥∥∥≤
(
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

)
∥U∗D∗∥2,∞

with probability higher than 1− 3exp(−α),∀i∈ [N ]. Since ∥Ũ−U∗D∗∥2,∞ =maxi∈[N ]

∥∥∥∥(Ũ−U∗D∗
)(i,·)∥∥∥∥ ,

by union probability, we have

P

[
∥Ũ−U∗D∗∥2,∞ ≤

(
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

)
∥U∗D∗∥2,∞

]
≥ 1− 3N exp(−α).

Similarly, we can also show that

P

[
∥Ṽ−V∗D∗∥2,∞ ≤

(
15ϵfκη

√
r

2∥Θ∗∥∞
+

4
√
2αη2κrσ

√
nmin∥Θ∗∥2∞

)
∥V∗D∗∥2,∞

]
≥ 1− 3K exp(−α).

Therefore our argument goes. □

Proof of Lemma C.4. We first prove the bound for σmin(Θ̂). By the condition in the claim statement

and (F.2), we have

ϵf ≤ ∥Θ∗∥∞
2ηκ

√
r
≤

√
KNσmin(Θ

∗)

2
.

By Lemma F.11, we have

σmin(Θ̂)≥ σmin(Θ
∗)−∥Θ∗ − Θ̂∥F ≥ σmin(Θ

∗)− ϵf
√
KN

≥ σmin(Θ
∗)− σmin(Θ

∗)

2
=

σmin(Θ
∗)

2
.

Hence by Lemma F.12 and (F.2), we have

∥V̂∥2,∞ ≤
√
N∥Θ̂∥∞
σmin(Θ̂)

≤ 2
√
N∥Θ̂∥∞

σmin(Θ∗)
≤ 2

√
N∥Θ̂∥∞

√
NK∥Θ∗∥∞√

rηκ

≤ 2κη

∥Θ∗∥∞

√
r

K
,

where the last inequality is given by the constraint in (3.1). □
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C.5. Proof of Lemma C.3

Proof of Lemma C.3. First we show that as long as ϵ≤ 1
2
√
rηκ

, we have rank(Ũ) = r. Then it suffices to

show that σr(Ũ)> 0. By Weyl’s inequality (Lemma F.7) and the definition of ϵ in (C.3), we have ∀i∈ [r]

|σi(D1)−σi(Θ
∗)|= |σi(Ũ)−σi(U

∗D∗)| ≤ ∥Ũ−U∗D∗∥F

≤
√
N∥Ũ−U∗D∗∥2,∞

≤ ϵ
√
NK∥Θ∗∥∞.

Then by (F.2), we have

σr(Ũ) = σr(D1)≥ σmin(Θ
∗)− |σr(D1)−σmin(Θ

∗)|

≥
√
NK∥Θ∗∥∞√

rηκ
− ϵ

√
NK∥Θ∗∥∞

=

(
1√
rηκ

− ϵ

)√
NK∥Θ∗∥∞ ≥max

{
ϵ

2
,

1

2
√
rηκ

}√
NK∥Θ∗∥∞, (C.15)

where the last inequality is given by the condition ϵ≤ 1
2
√
rηκ

. (C.15) shows that D1 is a full rank diagonal

matrix in Rr×r, and thus D−1
1 is well-defined. Then we can write

Θ̃=U1Q1Ṽ
⊤

= (U1D1Q1)Q
⊤
1 D1

−1Q1Ṽ
⊤

= (U∗D∗ + Ũ−U∗D∗︸ ︷︷ ︸
=∆U

)(D∗−1 +Q⊤
1 D

−1
1 Q1 −D∗−1︸ ︷︷ ︸

=∆D

)(D∗V∗⊤ + Ṽ⊤ −D∗V∗⊤︸ ︷︷ ︸
=∆⊤

V

).

We first bound the three terms ∆U , ∆D and ∆V respectively. Lemma F.13 and (C.15) yield

∥∆D∥op ≤
maxi∈[r] |σi(D1)−σi(D

∗)|
σmin(D1)σmin(D∗)

≤ ϵ
√
NK∥Θ∗∥∞

max
{

ϵ
2
, 1
2
√

rηκ

}√
NK∥Θ∗∥∞σmin(Θ∗)

≤min

{
2

σmin(Θ∗)
,
2
√
rηκϵ

σmin(Θ∗)

}
. (C.16)

Additionally, given our conditions in the lemma statement, we have

∥∆U∥2,∞ = ∥Ũ−U∗D∗∥2,∞ ≤ ϵ∥U∗D∗∥2,∞

and

∥∆V ∥2,∞ = ∥Ṽ−V∗D∗∥2,∞ ≤ ϵ∥V∗D∗∥2,∞. (C.17)

Now we decompose Θ̃−Θ∗ as

Θ̃−Θ∗ = (U∗D∗ +∆U )(D
∗−1 +∆D)(D∗V∗⊤ +∆⊤

V )−Θ∗

=U∗D∗(D∗−1 +∆D)(D∗V∗⊤ +∆⊤
V )+∆U (D

∗−1 +∆D)(D∗V∗⊤ +∆⊤
V )−Θ∗

=U∗D∗D∗−1D∗V∗⊤ −Θ∗ +U∗D∗(D∗−1 +∆D)∆⊤
V +U∗D∗∆D(D∗V∗⊤ +∆⊤

V )

+∆U (D
∗−1 +∆D)(D∗V∗⊤ +∆⊤

V )

=U∗D∗(D∗−1 +∆D)∆⊤
V︸ ︷︷ ︸

=∆1

+U∗D∗∆D(D∗V∗⊤ +∆⊤
V )︸ ︷︷ ︸

=∆2

+∆U (D
∗−1 +∆D)(D∗V∗⊤ +∆⊤

V )︸ ︷︷ ︸
=∆3

. (C.18)
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In what follows, we bound the infinity norm of the three terms ∆1, ∆2 and ∆3 respectively.

For the term ∆1, we have the following inequalities:

∥U∗D∗∥2,∞ = ∥Θ∗∥2,∞ ≤ ∥Θ∗∥∞
√
K, and ∥V∗D∗∥2,∞ = ∥Θ∗⊤∥2,∞ ≤ ∥Θ∗∥∞

√
N, (C.19)

which are given by (F.1), and

∥D∗−1 +∆D∥op ≤ ∥D∗−1∥op + ∥∆D∥op =
1

σmin(D∗)
+ ∥∆D∥op

≤ 1

σmin(D∗)
+

2

σmin(D∗)

=
3

σmin(D∗)
≤ 3

√
rηκ√

NK∥Θ∗∥∞
, (C.20)

where the first inequality is given by (C.16) and the last inequality is given by (F.2). Then by Lemma F.14

we have

∥∆1∥∞ ≤ ∥U∗D∗∥2,∞∥D∗−1 +∆D∥op∥∆V ∥2,∞

≤ ∥U∗D∗∥2,∞∥D∗−1 +∆D∥opϵ∥D∗V∗⊤∥2,∞

≤ ∥Θ∗∥∞
√
K · 3

√
rηκ√

NK∥Θ∗∥∞
· ϵ∥Θ∗∥∞

√
N

= 3ϵ
√
rκη∥Θ∗∥∞.

where the second inequality is given by (C.17), (C.19) and (C.20). Similarly, we have

∥∆3∥∞ =
∥∥∆U (D

∗−1 +∆D)(D∗V∗⊤ +∆⊤
V )
∥∥
∞

≤ ∥∆U∥2,∞∥D∗−1 +∆D∥op∥D∗V∗⊤ +∆⊤
V ∥2,∞

≤ ϵ∥U∗D∗∥2,∞∥D∗−1 +∆D∥op(1+ ϵ)∥D∗V∗⊤∥2,∞

≤ (1+ ϵ)
3ϵ
√
rηκ∥Θ∗∥∞

2

≤
(
1+

1

2
√
rηκ

)
3ϵ
√
rηκ∥Θ∗∥∞

2

≤ 9ϵ
√
rηκ∥Θ∗∥∞

4
,

where the last inequality is given by κ, r, η > 1. For the term ∆2, we have an analogous argument

∥∆2∥∞ ≤ ∥U∗D∗∥2,∞∥∆D∥op∥D∗V∗⊤ +∆⊤
V ∥2,∞

≤ ∥U∗D∗∥2,∞∥∆D∥op(1+ ϵ)∥D∗V∗⊤∥2,∞

≤ (1+ ϵ)∥Θ∗∥∞
√
K ·min

{
2

σmin(Θ∗)
,
2
√
rηκϵ

σmin(Θ∗)

}
· ∥Θ∗∥∞

√
N

≤ (1+ ϵ)∥Θ∗∥∞
√
K · 2

√
rηκ√

NK∥Θ∗∥∞
· ∥Θ∗∥∞

√
N

≤ 3ϵ
√
rηκ∥Θ∗∥∞

where the third inequality is given by (C.16). Thus we conclude

∥Θ̃−Θ∗∥∞ ≤ ∥∆1∥∞ + ∥∆2∥∞ + ∥∆3∥∞

≤ 33ϵ
√
rηκ∥Θ∗∥∞

4
. □
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Appendix D: Proofs of Theorem 4

D.1. Major Steps of the Proof

To prove Theorem 4, we will decompose the regret of Algorithm 2 into the regret from the exploration phase

and the regret from the exploitation phase. The regret in the exploration phase can be easily upper bounded

by NEh since the per-period regret is less than N for any period t∈ [T ], regardless of which Xt we choose.

To show the regret in the exploitation phase, we first prove Proposition 2, which says that the per-

period regret for the exploitation phase ⟨X∗,Θ∗⟩−⟨Xc,Θ
∗⟩= Õ(r3/2KE

−1/2
h ), with probability higher than

1− 4(NT )−1. We provide the proof in Appendix D.3.

Proposition 2. Given λ= cλσ(log(NT )+ log(N +K))/
√
Eh in (3.1) for a constant cλ, Xc obtained in

Algorithm 2 after Eh exploration steps satisfies

⟨X∗,Θ∗⟩− ⟨Xc,Θ
∗⟩ ≤ 2

√
2rδF (Eh)

with probability higher than 1− 4(NT )−1, where

δF (Eh) = c4max

cλσK (α+ log(N +K))

√
r

Eh

, rK

√
log[(N +K)Eh]

NEh


for the constant c4 from (A.4).

Equipped with Proposition 2, we can show the following lemma that combines the regret from the two

phases, which is sufficient for proving Theorem 4. The proof for this lemma is in Appendix D.4.

Lemma D.1. Set

λ= cλσ
log(NT )+ log(N +K)√

Eh

in (3.1) where cλ is a constant. Then the regret of Algorithm 2 satisfies

E[R(T )]≤NEh +2
√
2r(T −Eh)δF (Eh)+ 4.

D.2. Proof of Theorem 4

Proof of Theorem 4. By Lemma D.1, choosing Eh = chrT
2/3 where ch is a suitable constant yields

E[R(T )]≤NEh +2
√
2r(T −Eh)δF (Eh)+ 4

= chrNT 2/3 +2
√
2r(T − chrT

2/3)δF (chrT
2/3)+ 4

≤ chrNT 2/3 +2
√
2rTδF (chrT

2/3)+ 4

= Õ
(
NrT 3/2 + r1/2TrK(rT 2/3)−1/2

)
= Õ

(
r(N +K)T 3/2

)
,

which completes our proof. □
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D.3. Proof of Proposition 2

Proof of Proposition 2. We first invoke the explicit form of Theorem 1 in (A.4) with n=Eh to get

P[∥Θ∗ − Θ̂∥F ≥ δF (Eh)]≤ 4(NT )−1,

by our choice of λ. Thus

⟨X∗,Θ∗⟩− ⟨Xc,Θ
∗⟩= ⟨X∗,Θ∗ − Θ̂⟩+ ⟨Xc,Θ

∗ − Θ̂⟩

≤
∣∣⟨X∗,Θ∗ − Θ̂⟩

∣∣+ ∣∣⟨Xc,Θ
∗ − Θ̂⟩

∣∣
≤ ∥X∗∥op∥Θ∗ − Θ̂∥∗ + ∥Xc∥op∥Θ∗ − Θ̂∥∗

= 2∥Θ∗ − Θ̂∥∗

≤ 2
√
2r∥Θ∗ − Θ̂∥F ≤ 2

√
2rδF (Eh)

with probability higher than 1− 4(NT )−1 where the second equality is given by the matching structure of

X∗ and Xc, and the last inequality is given by rank(Θ∗ − Θ̂)≤ rank(Θ∗)+ rank(Θ̂)≤ 2r. □

D.4. Proof of Lemma D.1

Proof of Lemma D.1. For the first Eh rounds, we have
Eh∑
t=1

⟨X∗,Θ∗⟩− ⟨Xt,Θ
∗⟩ ≤

Eh∑
t=1

⟨X∗,Θ∗⟩ ≤
Eh∑
t=1

N∥Θ∗∥∞ ≤NEh.

By Proposition 2, we have ⟨X∗,Θ∗⟩ − ⟨Xc,Θ
∗⟩ ≤ 2

√
2rδF (Eh) with probability higher than 1− 4(NT )−1.

This implies that
T∑

t=Eh

⟨X∗,Θ∗⟩− ⟨Xt,Θ
∗⟩=

T∑
t=Eh

⟨X∗,Θ∗⟩− ⟨Xc,Θ
∗⟩ ≤ (T −Eh)2

√
2rδF (Eh)

with probability higher than 1− 4(NT )−1. Therefore, the total regret

R(T ) =

T∑
t=1

⟨X∗,Θ∗⟩− ⟨Xt,Θ
∗⟩ ≤NEh +(T −Eh)2

√
2rδF (Eh)

with probability higher than 1− 4(NT )−1. Now notice that for any t∈ [T ] and any Xt ∈M, we have

⟨X∗,Θ∗⟩− ⟨Xt,Θ
∗⟩ ≤N,

which implies that

R(T ) =

T∑
t=1

(⟨X∗,Θ∗⟩− ⟨Xt,Θ
∗⟩)≤NT

almost surely. Then we can decompose the regret expectation

E [R(T )] =E

[
T∑

t=1

(⟨X∗,Θ∗⟩− ⟨Xt,Θ
∗⟩)

]
=E

[
R(T ) · I

{
R(T )≤NEh +(T −Eh)2

√
2rδF (Eh)

}]
+E

[
R(T ) · I

{
R(T )>NEh +(T −Eh)2

√
2rδF (Eh)

}]
≤NEh +(T −Eh)2

√
2rδF (Eh)+NT ·P

[
R(T )>NEh +(T −Eh)2

√
2rδF (Eh)

]
≤NEh +(T −Eh)2

√
2rδF (Eh)+NT · 4(NT )−1

=NEh +(T −Eh)2
√
2rδF (Eh)+ 4,

which completes our proof. □
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Appendix E: Proof of Theorem 5

E.1. Major Steps of the Proof

Following the literature (Gale and Shapley 1962), we assume there is no tie in preferences without loss of

generality. A key ingredient for the proof of Theorem 5 is that a stable matching is determined solely based

on the preference rankings of both workers and jobs; in other words, accurate reward estimation is not

critical as long as the rankings derived from it are precise. When the minimum reward gap between pairs is

sufficiently large, accurate rankings and hence a worker-optimal stable matching can still be achieved even

under imprecise reward estimations. Liu et al. (2020) provide a similar observation in their Lemma 3. To

this end, we let

∆min = min
i∈[N ]

{
min
j ̸=j′

|Θ∗(i,j) −Θ∗(i,j′)|
}

denote the minimum gap of rewards over all workers i∈ [N ]. Then, provided that the infinity-norm estimation

error ∥Θ̃−Θ∗∥∞ ≤∆min/2 where Θ̃ is obtained from Algorithm 3, we can ensure that the stable matching

we commit to, i.e., Xc, coincides with the worker-optimal stable matching X∗. This main idea gives rise to

the bound on the stable regret for every worker (as previously defined in (5.2)) in Theorem 5.

We introduce the following lemma before we prove Theorem 5. Its proof is provided in Appendix E.3.

Lemma E.1. Given our choice of λ= cλσ log
(
(N +K)(3N +3K +5)T

)
/
√
Eh, the stable regret of Algo-

rithm 3 for worker i satisfies

E[Ri(T )]≤ 2Eh +2(T −Eh) · I{δ∞(Eh)>∆min/2}+2, ∀i∈ [N ], (E.1)

where

δ∞(Eh) = c6η
2κ2r3/2max

{
cλσ log

[
(N +K)(3N +3K +5)T

]√ K

NEh

,

√
rK log[(N +K)Eh]

NEh

,
ησ
√
log
[
(3N +3K +5)T

]
∥Θ∗∥∞

√
K

NEh

}
for the constant c6 from (C.7).

E.2. Proof of Theorem 5

Proof of Theorem 5. Following Lemma E.1, choose

Eh = c7
r3K

N∆2
min

max

{
c2λσ

2 log2
[
(N +K)(3N +3K +5)T

]
, r log

[
(N +K)T

]
,
η2σ2 log

[
(3N +3K +5)T

]
∥Θ∗∥2∞

}
where c7 ≥ 4c26η

4κ4 is a constant and and suppose that T is large enough such that Eh ≤ T. Then we have

Eh = c7
r3K

N∆2
min

max

{
c2λσ

2 log2
[
(N +K)(3N +3K +5)T

]
, r log

[
(N +K)T

]
,
η2σ2 log

[
(3N +3K +5)T

]
∥Θ∗∥2∞

}

≥ 4c26η
4κ4r3K

N∆2
min

max

{
c2λσ

2 log2
[
(N +K)(3N +3K +5)T

]
, r log

[
(N +K)T

]
,
η2σ2 log

[
(3N +3K +5)T

]
∥Θ∗∥2∞

}

≥ 4c26η
4κ4r3K

N∆2
min

max

{
c2λσ

2 log2
[
(N +K)(3N +3K +5)T

]
, r log

[
(N +K)Eh

]
,
η2σ2 log

[
(3N +3K +5)T

]
∥Θ∗∥2∞

}
,
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which implies

δ∞(Eh)≤
∆min

2
.

By Lemma E.1, we have

E[Ri(T )]≤ 2Eh +2(T −Eh) · I{δ∞(Eh)>∆min/2}+1

=O
(
r3Kmax{log2[(N +K)T ], r log[(N +K)T ]}

N∆2
min

)
,

which completes our proof. □

E.3. Proof of Lemma E.1

Proof of Lemma E.1. First notice that, as long as the estimation error ∥Θ∗ − Θ̃∥∞ ≤∆min/2, we will

have Xc =X∗. This is because, as aforementioned, the Gale-Shapley algorithm only considers the preference

rankings from both sides when deriving the worker-optimal stable matching. In other words, as long as the

preference rankings derived from Θ̃ are the same as those derived from Θ∗, the result returned by Gale-

Shapley algorithm will be the same. The condition ∥Θ∗ − Θ̃∥∞ ≤ ∆min/2 will ensure that each worker’s

preferences will be the same under Θ∗ and Θ̃. Now with this claim, we can bound the regret in the rounds

from Eh +1 to T. For any i∈ [N ], we have

E

[
T∑

t=Eh+1

(
⟨X∗i,Θ∗⟩− ⟨Xi

t,Θ
∗⟩
)]

=E

[
T∑

t=Eh+1

(
⟨Xi

c,Θ
∗⟩− ⟨Xi

t,Θ
∗⟩
)]

=E

[
T∑

t=Eh+1

(
⟨Xi

c,Θ
∗⟩− ⟨Xi

t,Θ
∗⟩
)
· I{Xc ̸=X∗}

]

=E

[
T∑

t=Eh+1

(
⟨Xi

c,Θ
∗⟩− ⟨Xi

t,Θ
∗⟩
)
· I{Xc ̸=X∗} · I{∥Θ̃−Θ∗∥∞ ≤ δ∞(Eh)} · I{δ∞(Eh)≤∆min/2}

]

+E

[
T∑

t=Eh+1

(
⟨Xi

c,Θ
∗⟩− ⟨Xi

t,Θ
∗⟩
)
· I{Xc ̸=X∗} · I{∥Θ̃−Θ∗∥∞ ≤ δ∞(Eh)} · I{δ∞(Eh)>∆min/2}

]

+E

[
T∑

t=Eh+1

(
⟨Xi

c,Θ
∗⟩− ⟨Xi

t,Θ
∗⟩
)
· I{Xc ̸=X∗} · I{∥Θ̃−Θ∗∥∞ > δ∞(Eh)}

]

=E

[
T∑

t=Eh+1

(
⟨Xi

c,Θ
∗⟩− ⟨Xi

t,Θ
∗⟩
)
· I{Xc ̸=X∗} · I{∥Θ̃−Θ∗∥∞ ≤ δ∞(Eh)} · I{δ∞(Eh)>∆min/2}

]

+E

[
T∑

t=Eh+1

(
⟨Xi

c,Θ
∗⟩− ⟨Xi

t,Θ
∗⟩
)
· I{Xc ̸=X∗} · I{∥Θ̃−Θ∗∥∞ > δ∞(Eh)}

]
≤ 2(T −Eh) · I{δ∞(Eh)>∆min/2}+2(T −Eh)P

[
∥Θ̃−Θ∗∥∞ > δ∞(Eh)

]
≤ 2(T −Eh) · I{δ∞(Eh)>∆min/2}+2(T −Eh)T

−1 ≤ 2(T −Eh) · I{δ∞(Eh)>∆min/2}+2

where the first inequality is given by ⟨Xi
c,Θ

∗⟩ − ⟨Xi
t,Θ

∗⟩ ≤ |⟨Xi
c,Θ

∗⟩| + |⟨Xi
t,Θ

∗⟩| ≤ 2 and the second

inequality comes from ∥Θ̃−Θ∗∥∞ ≤ δ∞(Eh) with probability higher than 1− (T )−1 given Theorem 3. Then

we have

E [Ri(T )] =E

[
Eh∑
t=1

(
⟨X∗i,Θ∗⟩− ⟨Xi

t,Θ
∗⟩
)]

+E

[
T∑

t=Eh+1

(
⟨X∗i,Θ∗⟩− ⟨ΘXi

t,Θ
∗⟩
)]
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≤E

[
Eh∑
t=1

(
|⟨X∗i,Θ∗⟩|+ |⟨Xi

t,Θ
∗⟩|
)]

+E

[
T∑

t=Eh+1

(
⟨X∗i,Θ∗⟩− ⟨Xi

t,Θ
∗⟩
)]

≤ 2Eh +2(T −Eh) · I{δ∞(Eh)>∆min/2}+2,

which completes the proof. □

Appendix F: Technical Lemmas

Lemma F.1. Let Z1, · · · ,Zn be i.i.d. matrices in RN×K with E[Zi] = 0 and ∥Zi∥op ≤ ω almost surely for

all i∈ [n]; let σZ be a parameter such that

σ2
Z ≥max


∥∥∥∥∥

n∑
i=1

E
[
Z⊤

i Zi

]∥∥∥∥∥
op

,

∥∥∥∥∥
n∑

i=1

E
[
ZiZ

⊤
i

]∥∥∥∥∥
op

 .

Then for any ρ> 0,

P

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
op

≥ ρ

≤ (N +K) exp

[
−ρ2

2σ2
Z +(2ωρ)/3

]
.

Proof of Lemma F.1. See Proposition 1 in Athey et al. (2021). □

Lemma F.2. For any ζ > 0, let

C(ζ) = {A∈RN×K | ∥A∥∞ ≤ 1,EΠ[∥A ◦X∥2F ]≤ ζ},

where X is a random matrix following distribution Π (defined in Section 2). Let Xk, k ∈ [n] be i.i.d. copies

of X and zζ = supA∈C(ζ)
∣∣ 1
n

∑n
k=1 ∥A ◦Xk∥2F −EΠ[∥A ◦X∥2F ]

∣∣ . Then we have

P
[
zζ ≥ 2E[zζ ] +

7ζ

24

]
≤ exp

(
−nζ

288N

)
.

Proof of Lemma F.2. Our result relies on the Massart’s concentration inequality (see Theorem 3 in Mas-

sart (2000)). First note that

∥A ◦X∥2F ≤N,∀A∈ C(ζ).

Then we need to provide an upper bound for

σ2
ζ = sup

A∈C(ζ)

n∑
k=1

Var(∥A ◦X∥2F ).

We have

σ2
ζ = sup

A∈C(ζ)

n∑
k=1

Var(∥A ◦X∥2F )

≤ sup
A∈C(ζ)

n∑
k=1

E[∥A ◦X∥4F ]

≤ sup
A∈C(ζ)

n∑
k=1

E[∥A ◦X∥2F ]E[∥A ◦X∥2F ]

≤ nNζ,

where the second inequality is given by the definition of variance and the third inequality is given by the

definition of C(ζ). Thus we choose ε′ = 1, σζ =
√
nNζ, b=N and x= nζ/(288N) in (11) of Massart (2000),

and we obtain

P
[
zζ ≥ 2E[zζ ] +

7ζ

24

]
≤ exp

(
−nζ

288N

)
. □
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Lemma F.3. For any two matrices A,B we have

rank(A ◦B)≤ rank(A) · rank(B)

where A ◦B denotes the Hadamard product of matrix A and B.

Proof of Lemma F.3. See Theorem 4.5 of Million (2007). □

Lemma F.4. Let Z1, · · · ,Zn be fixed matrices in RN×K and ξ1, ξ2, · · · , ξn be independent Rademacher

random variables; let σZ be a parameter such that

σ2
Z ≥max


∥∥∥∥∥

n∑
i=1

Z⊤
i Zi

∥∥∥∥∥
op

,

∥∥∥∥∥
n∑

i=1

ZiZ
⊤
i

∥∥∥∥∥
op

 .

Then for any ρ > 0,

P

∥∥∥∥∥
n∑

i=1

ξiZi

∥∥∥∥∥
op

≥ ρ

≤ (N +K) exp

[
−ρ2

2σ2
Z

]
.

Proof of Lemma F.4. See Theorem 4.1.1 of Tropp et al. (2015). □

Lemma F.5. Consider n fixed vectors X1,X2, · · · ,Xn ∈ Rd where ∥Xi∥ ≤ S,∀i ∈ [n]. Then for n i.i.d.

σ-subgaussian random variables εi, we have

P

[∥∥∥ n∑
i=1

εiXi

∥∥∥≥ ρ

]
≤ 2exp

(
−ρ2

2ndS2σ2

)
,∀ρ> 0.

Proof of Lemma F.5. It is straightforward to see that εiXi is a σS-subgaussian random vector for each

i∈ [n]. Thus
∑

i εiXi is a
√
nσS-subgaussian random vector. By Lemma F.15, we immediately have

P

[∥∥∥ n∑
i=1

εiXi

∥∥∥≥ ρ

]
≤ 2exp

(
−ρ2

2ndS2σ2

)
. □

Lemma F.6 (Matrix Chernoff). Consider independent positive-semidefinite matrices Z1,Z2, · · · ,Zk ∈

Rd×d that satisfy

∥Zi∥op ≤ ω,∀i∈ [k] almost surely.

Then we have

P

[
λmin

(
k∑

i=1

Zi

)
≤ ρµmin

]
≤ d · e−(1−ρ)2µmin/2ω,∀ρ∈ [0,1]

and

P

[
λmax

(
k∑

i=1

Zi

)
≥ ρµmax

]
≤ d ·

[
e

ρ

]ρµmax/ω

,∀ρ≥ e,

where

µmin = λmin

(
k∑

i=1

EZi

)
and µmax = λmax

(
k∑

i=1

EZi

)
.

Proof of Lemma F.6. See Remark 5.3 in Tropp (2012). □

Lemma F.7 (Weyl’s Inequality). For any matrix A,A′ ∈RN×K , it holds for all i∈ [min{N,K}] that

|σi(A)−σi(A
′)| ≤ ∥A−A′∥op.
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Proof of Lemma F.7. See Weyl (1912). □

Lemma F.8. For any Θ∗ ∈RN×K with SVD Θ∗ =U∗D∗V∗⊤, we have

∥U∗D∗∥2,∞ = ∥Θ∗∥2,∞. (F.1)

Further, if Θ∗ satisfies Assumption 1, we have

σmin(Θ
∗) =

∥Θ∗∥op
κ

≥ ∥Θ∗∥F√
rκ

≥
√
NK∥Θ∗∥∞√

rηκ
, (F.2)

where κ is the conditional number of Θ∗.

Proof of Lemma F.8. For (F.1), notice that

∥U∗D∗∥2,∞ = max
i∈[N ]

∥ei(N)⊤U∗D∗∥= max
i∈[N ]

∥ei(N)⊤U∗D∗V∗⊤∥= max
i∈[N ]

∥ei(N)⊤Θ∗∥= ∥Θ∗∥2,∞,

where the second equation is given by that V∗ is orthogonal and multiplying a vector by an orthogonal

matrix does not change its length.

For (F.2), the first equation and the first inequality are straightfoward. The last inequality directly follows

Assumption 1, i.e.,

∥Θ∗∥F ≥
√
NK∥Θ∗∥∞

η
. □

Lemma F.9. Let V ∈ RK×r be an orthogonal matrix (i.e., V⊤V = Ir×r). We have for any matrix A ∈

Rr×K , ∥VA∥op ≤ ∥A∥op = ∥AV∥op.

Proof of Lemma F.9. By the property of operator norm, we have

∥VA∥op ≤ ∥V∥op∥A∥op = ∥A∥op.

Let the SVD of A be A = UADVA, where VA is an r × r orthogonal matrix. Thus we have AV =

UAD(VAV), which is a SVD since both UA and VAV are orthogonal matrices. Hence the singular values

of A and AV are the same, which yields ∥A∥op = ∥AV∥op. □

Lemma F.10. For any rank r matrices Θ, Θ̂ ∈ RN×K , let Θ̂= ÛD̂V̂⊤ be an arbitrary SVD of Θ̂, then

there exists SVD Θ=UDV⊤, where

∥U− Û∥F ≤ 5

(
1

σr(Θ)
+

1

σr(Θ̂)

)
∥Θ− Θ̂∥F

and

∥V− V̂∥F ≤ 5

(
1

σr(Θ)
+

1

σr(Θ̂)

)
∥Θ− Θ̂∥F .

Proof of Lemma F.10. In this proof, let Θ=UDV⊤ be an arbitrary SVD of Θ. Moreover, let

F′ =

[
U′

V′

]
and F=

[
U
V

]
.

Then it remains to bound

d(F,F′) = min
Q∈Or

∥F−F′Q∥F = min
Q∈Or

∥FQ⊤ −F′∥F .
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By Remark 6.1 in Keshavan et al. (2010), we have

d(F,F′)≤
√
2∥F′F′⊤ −FF⊤∥F =

√
2(∥ÛÛ⊤ −UU⊤∥F + ∥V̂V̂⊤ −VV⊤∥F +2∥ÛV̂⊤ −UV⊤∥F ).

By Lemma F.16, we have that

∥ÛÛ⊤ −UU⊤∥F ≤
√
2∥Θ− Θ̂∥F
σr(Θ)

and ∥V̂V̂⊤ −VV⊤∥F ≤
√
2∥Θ− Θ̂∥F
σr(Θ̂)

.

Furthermore, notice that ÛV̂⊤ = sgn(Θ̂) and UV⊤ = sgn(Θ), which are defined in Lemma F.17. Then by

Lemma F.17, we have

∥ÛV̂⊤ −UV⊤∥F ≤ 3

2

(
1

σr(Θ)
+

1

σr(Θ̂)

)
∥Θ− Θ̂∥F .

Thus

d(F,F′)≤

(
3
√
2

2
+2

)(
1

σr(Θ)
+

1

σr(Θ̂)

)
∥Θ− Θ̂∥F

≤ 5

(
1

σr(Θ)
+

1

σr(Θ̂)

)
∥Θ− Θ̂∥F ,

which completes the proof. □

Lemma F.11. For any rank r matrices Θ, Θ̂∈RN×K , we have∣∣σmin(Θ)−σmin(Θ̂)
∣∣≤ ∥Θ− Θ̂∥F .

Proof of Lemma F.11. By Lemma F.7, we have∣∣σr(Θ)−σr(Θ̂)
∣∣≤ ∥Θ− Θ̂∥op ≤ ∥Θ− Θ̂∥F . □

Lemma F.12. For any matrix Θ∈RN×K , let the SVD of Θ=UDV⊤, we have

∥U∥2,∞ ≤
√
K∥Θ∥∞
σmin(Θ)

and ∥V∥2,∞ ≤
√
N∥Θ∥∞
σmin(Θ)

.

Proof of Lemma F.12. We have

∥U∥2,∞σmin(Θ)≤ ∥Θ∥2,∞ ≤
√
K∥Θ∥∞,

which gives us the first inequality. The second inequality can be obtained via an analogous argument. □

Lemma F.13. For any positive definite matrices A,D∈Rr×r where D is a diagonal matrix, we have

∥A−1 −D−1∥op ≤
maxi∈[r] |σi(A)−Dii|

σmin(A)σmin(D)

Proof of Lemma F.13. For any positive definite matrix A, there exists an orthogonal matrix Q and a

diagonal matrix DA such that

A=QDAQ
⊤,

where the ith element on the diagonal of DA is σi(A). Thus we have A−1 =QD−1
A Q⊤, and

A−1 −D−1 =QD−1
A Q⊤ −D−1

=QD−1
A Q⊤ −QD−1Q⊤

=Q(D−1
A −D−1)Q⊤.
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By the definition of operator norm, we know that

∥A−1 −D−1∥op =max
i∈[r]

|D−1
A (i, i)−D−1(i, i)|

=max
i∈[r]

|σi(A)−1 −D−1
ii |

=max
i∈[r]

∣∣∣∣Dii −σi(A)

σi(A)Dii

∣∣∣∣
≤

maxi∈[r] |σi(A)−Dii|
σmin(A)σmin(D)

. □

Lemma F.14. For any matrices A,B,C, we have

∥ABC⊤∥∞ ≤ ∥AB∥2,∞∥C∥2,∞ ≤ ∥A∥2,∞∥B∥op∥C∥2,∞.

Proof of Lemma F.14. The first inequality is straightforward. Here we show that

∥AB∥2,∞ ≤ ∥A∥2,∞∥B∥op

for any matrices A and B. Let d1 denote the row-dimension of matrix A and we have

∥AB∥2,∞ = max
i∈[d1]

∥ei(d1)⊤AB∥ ≤ max
i∈[d1]

∥ei(d1)⊤A∥∥B∥op = ∥A∥2,∞∥B∥op. □

Lemma F.15. For any σ-subgaussian random vector X ∈Rd, we have

P [∥X∥ ≥ ρ]≤ 2exp

(
−ρ2

2dσ2

)
,∀ρ > 0.

Proof of Lemma F.15. See Lemma 1 in Jin et al. (2019). □

Lemma F.16. For any rank r matrices Θ, Θ̂ ∈RN×K , let Θ̂= ÛD̂V̂⊤ and Θ=UDV⊤ be their SVDs.

Then we have

∥ÛÛ⊤ −UU⊤∥F ≤
√
2∥Θ− Θ̂∥F
σr(Θ)

.

Proof of Lemma F.16. First notice that

∥ÛÛ⊤ −UU⊤∥F =
√
2 · inf

Q∈Rr×r
∥U− ÛQ∥F .

To show this equality, we first note that ∥U− ÛQ∥F is minimized when Q= Û⊤U. Thus we have

inf
Q∈Rr×r

∥U− ÛQ∥F = ∥U− ÛÛ⊤U∥F

=

√
tr

((
U− ÛÛ⊤U

)(
U− ÛÛ⊤U

)⊤)
=

√
tr (UU⊤)− 2 tr

(
ÛÛ⊤UU⊤

)
+tr

(
ÛÛ⊤UU⊤ÛÛ⊤

)
=

√
tr (UU⊤)− tr

(
ÛÛ⊤UU⊤

)
=

√
r− tr

(
ÛÛ⊤UU⊤

)
.
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On the other hand, we have

∥ÛÛ⊤ −UU⊤∥F =

√
tr

((
ÛÛ⊤ −UU⊤

)(
ÛÛ⊤ −UU⊤

)⊤)
=

√
2r− 2 tr

(
ÛÛ⊤UU⊤

)
.

With this inequality, now we can derive

∥ÛÛ⊤ −UU⊤∥F =
√
2 · inf

Q∈Rr×r
∥U− ÛQ∥F

=
√
2 · inf

Q∈Rr×r
∥U⊤ −Q⊤Û⊤∥F

=
√
2 · inf

Q∈Rr×r
∥D−1(DU⊤ −DQ⊤Û⊤)∥F

≤
√
2 · ∥D−1

(
DU⊤ −D(D−1V⊤V̂D̂)Û⊤

)
∥F

=
√
2 · ∥D−1

(
V⊤VDU⊤ −V⊤V̂D̂Û⊤

)
∥F

=
√
2 ·
∥∥∥D−1V⊤

(
VDU⊤ − V̂D̂Û⊤

)∥∥∥
F

≤
√
2
∥∥∥VDU⊤ − V̂D̂Û⊤∥F

∥∥∥D−1V⊤∥op

≤
√
2∥Θ− Θ̂∥F
σmin(Θ)

,

which completes our proof. □

Lemma F.17. For any rank r matrices Θ, Θ̂∈RN×K , we have

∥sgn(Θ)− sgn(Θ̂)∥F ≤ 3

2

(
1

σr(Θ)
+

1

σr(Θ̂)

)
∥Θ− Θ̂∥F

where sgn(·) denotes the matrix sign function, i.e., sgn(Θ) =UV⊤ for a matrix Θ with SVD UDV⊤.

Proof of Lemma F.17. See Theorem 2.1 of Li and Sun (2006). □

Appendix G: Experiment Details

G.1. Synthetic Data

We create our synthetic data through the following steps. In particular, we consider N = 100 worker types

and K = 100 job types — i.e., there are N ×K = 10,000 number of worker-job pairs. For each of the 50

trials, we generate the ground-truth matching reward matrix8 Θ∗ ∈RN×K with rank r= 3 as follows. First,

we create two matrices U∗ ∈RN×r and V∗ ∈RK×r, of which the entries are independently drawn from the

uniform distribution on [0,1]. Then, we multiply the two matrices together and obtain Θ∗ =U∗V∗⊤.

Offline. We simulate n number of offline matching samples by drawing the matchings Xt’s uniformly at

random from the set of all matchings M. n takes the values 20,40,60,80,100 respectively. Each matching

sample t ∈ [n] contains N noisy rewards from its N matched pairs following (2.4). We draw the noises

ε
(i)
t ’s i.i.d. from a Gaussian distribution N (0, σ2) with σ2 = 0.1. For our algorithm, we tune cλ (i.e., a

hyperparameter of λ stated in Theorem 1) on a pre-specified grid and choose cλ equal to 0.001.

8 For the online stable matching experiment, Θ∗ represents the worker reward matrix that indicates worker preference
rankings.
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Online. We set our total time horizon T equal to 200,400,600,800,1000 respectively. For the online

optimal matching experiments, we set the number of exploration steps in our CombLRB to be Eh = qT 2/3 as

advised by Theorem 4 for some hyperparameter q. We tune the hyperparameter q and choose q= 1; λ is set

in the same way as the offline setting. The implementations of both CUCB and CTS algorithms follow that

described in Section 6 of Cuvelier et al. (2021).

For the online stable matching experiments, we generate the job preference rankings over workers through

the matrix Φ∗. Each column of Φ∗ is a random permutation of [N ]. For the 50 trials, we draw 10 such Φ∗

independently and then conduct 5 independent trials with each Φ∗. we set the length of exploration phase

for our CompLRB to be Eh = q logT for some hyperparameter q. We tune the hyperparameter q and choose

q= 40. λ is set in the same way as the offline setting.

G.2. Real Data of Labor Market

We use an individual-level workforce dataset provided by Revelio Labs, which includes comprehensive employ-

ment histories of individuals, including their roles, skills, activities, education, seniority, geographic location,

etc. For our analysis, we focus on software engineers with mid-level seniority employed in the United States

between 2010 and 2015. This subset contains observations from 468,807 software engineers employed by

89,365 different companies.

We group the engineers by their education background. Specifically, engineers who graduate from the

same school are put in the same group. We group all the 37,926 schools into 236 clusters by their sizes,

approximated by the total number of the graduates (i.e., employees) observed in the data. Schools with

similar sizes are grouped into the same cluster. Similarly, companies with similar sizes are grouped into 100

clusters. We finally keep the top N = 50 engineer clusters and K = 50 company clusters with the highest

number of observations to leave out pairs with missing data and very few observations. This procedure results

in a 50×50 ground-truth matrix Θ∗, where each entry represents the empirical probability that an engineer

from a given cluster stays in a company from a corresponding cluster for more than six months.

Our matching observations are generated following (2.4), where the noises are i.i.d. Gaussian with mean 0

and variance 0.1. The variance is set to be the empirical variance across all entries. For online stable matching

experiment, the job preference ranking matrix Φ∗ is generated in the same way as our synthetic experiment.

Similar to our synthetic experiments, we tune all the hyperparameters on pre-specified grids.
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