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Abstract
Large and complex datasets are often collected from several, possibly heteroge-

neous sources. Multitask learning methods improve efficiency by leveraging common-
alities across datasets while accounting for possible differences among them. Here, we
study multitask linear regression and contextual bandits under sparse heterogeneity,
where the source/task-associated parameters are equal to a global parameter plus a
sparse task-specific term. We propose a novel two-stage estimator called MOLAR that
leverages this structure by first constructing a covariate-wise weighted median of the
task-wise linear regression estimates and then shrinking the task-wise estimates to-
wards the weighted median. Compared to task-wise least squares estimates, MOLAR
improves the dependence of the estimation error on the data dimension. Extensions
of MOLAR to generalized linear models and constructing confidence intervals are
discussed in the paper. We then apply MOLAR to develop methods for sparsely het-
erogeneous multitask contextual bandits, obtaining improved regret guarantees over
single-task bandit methods. We further show that our methods are minimax optimal
by providing a number of lower bounds. Finally, we support the efficiency of our
methods by performing experiments on both synthetic data and the PISA dataset on
student educational outcomes from heterogeneous countries.
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1 Introduction

Large and complex datasets are often collected from multiple sources—such as from sev-

eral locations—and with possibly varying data collection methods. This can result in both

similarities and differences among the source-specific datasets. While some covariates have

consistent effects on the response across all sources, others may have different effects on

the response depending on the source. For instance, when predicting students’ academic

performance, the effects of socioeconomic status, language, and education policies may

vary across regions. See Figure 1 for an illustration of the multi-country PISA educa-

tional attainment dataset (OECD, 2019), described in more detail in Section 4.2, where

the regression coefficients of a few features vary strongly across countries (OECD, 2019).

Ignoring this heterogeneity may introduce bias and lead to incorrect predictions and de-

cisions. Similar situations arise in healthcare (Quinonero-Candela et al., 2008), demand

prediction (Baardman et al., 2023; Van Herpen et al., 2012), and other areas. Therefore,

instead of learning a shared model for all the data, it may help to develop models for each

task.

Figure 1: The differences in the least squares estimates of a measure of educational attain-
ment in selected countries for the PISA dataset. See details in Appendix J.

Although complex datasets are often heterogeneous, commonalities also exist across

data of the same type. Therefore, it may increase efficiency if we analyze them jointly.

This is often referred to as multitask analysis. Common multitask methods regularize
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the task-associated parameters via penalties (Evgeniou and Pontil, 2004; Evgeniou et al.,

2005; Duan and Wang, 2022), as well as cluster or pool datasets based on their similarity

(Ben-David et al., 2010; Crammer et al., 2008; Dobriban and Sheng, 2021). While these

methods have demonstrated improvements by factors equal to the number of tasks, these

methods can perform significantly worse than single-task learning when the heterogeneity

across tasks is severe. To achieve larger theoretical improvements, Tripuraneni et al. (2021);

Du et al. (2020); Collins et al. (2021) consider low-dimensional shared representations of

task-specific models, while Lounici et al. (2009); Singh and Sharma (2020) constrain the

task-specific parameters to be sparse with a common support set.

Often, only a small subset of covariates have different effects in different data sources or

in predicting different responses. For instance, in the Expedia personalized recommendation

dataset, Figure 2 of Bastani (2021) shows that out of 15 customer- and hotel-specific

features, only the price has significantly different effects on predicting bookings and clicks.

To capture this phenomenon in a broader multitask regime, we consider the following sparse

heterogeneity structure. Given M tasks, each task m is associated with a parameter β(m),

and {β(m)}Mm=1 differ only in a small number of coordinates. In particular, they have the

form β(m) = β⋆ + δ(m), for some unknown global parameter β⋆ representing the part of

the parameters shared across tasks; and for unknown sparse parameters δ(m)—with few

nonzero covariates—representing task-specific adjustments.

This structure has garnered interest in a number of prior works: Bastani (2021) com-

bined a large proxy dataset and a small target dataset when the associated parameters

differed in a sparse vector; Xu et al. (2021) considered group-wise sparse heterogeneity in

matrix factorization of word embeddings; while Xu and Bastani (2021) proposed methods

for multiple sparsely heterogeneous contextual bandits.
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However, prior work leaves open a number of important problems. In particular, it is not

clear what the statistically optimal methods are under sparse heterogeneity, even in linear

regression. Prior work has shown that heterogeneity-aware methods improve the dimension-

dependence of the estimation error rate, compared to heterogeneity-unaware or single-task

methods. However, it remains unclear whether better methods exist. In this paper, we

resolve this problem by establishing—to our knowledge—a new lower bound for estimating

several models with sparse heterogeneity, in both linear regression and contextual bandits.

We also propose novel methods and show that they achieve the lower bounds.

1.1 Contributions

We consider estimating M linear models under s-sparse heterogeneity, in both the offline

and online scenarios. We highlight our contributions as follows:

• For linear regression, we propose the MOLAR method—Median-based Multitask Es-

timator for Linear Regression—to jointly learn heterogeneous models: MOLAR first

applies a weighted covariate-wise median to source-specific least squares regression

estimators to obtain an estimate shared across tasks, and then obtains estimates of

individual tasks by shrinking the individual estimates towards the shared estimate

via thresholding. We provide upper bounds on the estimation error for each indi-

vidual task using MOLAR, showing the benefit of multiple tasks (large total sample

size n[M ]) and the sparse heterogeneity (small s). For balanced datasets, our result

improves the rates of pooled ordinary least squares (OLS) and the multitask method

of Xu and Bastani (2021) by factors of d/s and
√
d/s, respectively. Beyond estima-

tion in linear models, the applications of MOLAR to generalized linear models, and

statistical inference for task-wise parameters are then discussed.

We also provide matching minimax lower bounds in the multitask setting with sparse
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heterogeneity, showing the optimality of MOLAR. Our result generalizes the lower

bound for single-task linear regression to allow data points with different noise vari-

ances. The ℓ1 error strengthens an existing lower bound for sparse linear regression

(Raskutti et al., 2011).

• We formulate the asynchronous multitask setting for two types of contextual bandit

problems where each bandit instance has a certain probability of observing a context

and taking an action at any time. We use MOLAR in the multitask bandit setting,

leading to improved individual regret bounds, where the scaling in the context dimen-

sion d from single-task methods is replaced by the level of heterogeneity. In addition,

we provide new minimax lower bounds for asynchronous multitask bandit problems.

• We support our methods with experiments on both synthetic data and the PISA ed-

ucational attainment dataset. Our empirical results support our theoretical findings,

and show an improvement over existing methods.

1.2 Related Works

We review the most closely related works here. More literature is reviewed in Appendix A.

Data Heterogeneity. Complex datasets are often obtained by aggregating data from

heterogeneous sources; which may correspond to subpopulations with unique characteristics

(Fan et al., 2014; Meinshausen and Bühlmann, 2015; Marron, 2017). Data heterogeneity

can reduce the performance of standard methods designed for independent and identically

distributed (i.i.d.) data in statistical inference (Guo, 2020; Hu et al., 2022; Yuan et al.,

2023) and various learning tasks (Zhao et al., 2016; Gu and Chen, 2022; McMahan et al.,

2017). However, it is sometimes possible to mitigate the effects of heterogeneity (Luo et al.,

2022a; Yang et al., 2020; Zhang and Wang, 2019; Chen et al., 2022a; Wang et al., 2019).

5



Multitask Linear Regression & Contextual Bandits. Studying multitask linear

regression, Tripuraneni et al. (2021); Du et al. (2020) show improved generalization errors

compared to the single-task OLS, by considering a low-dimensional shared representation.

A similar result holds for personalized federated learning (Collins et al., 2021). Yang et al.

(2019) assume group-wise heterogeneity of parameters and propose to regularize the least

squares objective, without a finite-sample theoretical analysis.

Starting from Woodroofe (1979), literature on contextual bandits has developed vastly

(see e.g., Sarkar, 1991; Yang and Zhu, 2002; Perchet and Rigollet, 2013; Chen et al., 2021,

2022b,c; Luo et al., 2022b, etc). Multitask contextual bandit methods include regularizing

the bandit instance parameters, and pooling data from related bandit instances (see e.g.,

Soare et al., 2014; Chu et al., 2011; Valko et al., 2013; Cesa-Bianchi et al., 2013; Deshmukh

et al., 2017; Gentile et al., 2014, 2017). One can also impose a shared prior distribution over

bandit instances (Cella et al., 2020; Kveton et al., 2021; Bastani et al., 2022). However, most

resulting regret bounds for individual bandit instances can counter-intuitively deteriorate

and can be worse than for single-bandit methods. Furthermore, some methods require

bandit instances to appear sequentially to learn the prior (Lazaric et al., 2013).

Recently, Xu and Bastani (2021) propose methods with improved estimation error in

linear regression and regret in contextual bandits, when tasks are sparsely heterogeneous.

Our matching upper and lower bounds imply that their method is sub-optimal.

Transfer Learning. Transfer learning aims to boost the learning performance on a par-

ticular task (typically with a small dataset) when given data from other sources. A few

works have studied transfer learning in linear regression (Li et al., 2020) and generalized

linear models (Tian and Feng, 2022; Li et al., 2023), but mainly for parameters with ℓ1-

bounded heterogeneity.
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1.3 Notation

We introduce necessary notations here and refer to the full definitions in Appendix A. We

use := or ≜ to introduce definitions. For an integer d ≥ 1, we write [d] for {1, . . . , d}.

We use Id to denote the d × d identity matrix. For a vector v ∈ Rd, we denote its entries

as v1, . . . , vd. We also denote ∥v∥p = (
∑

k∈[d] |vk|p)1/p for all p > 0, with ∥v∥0 defined as

the number of non-zero entries. For any I ⊆ [M ], given weights {wm}Mm=1 (or sample

sizes {nm}Mm=1), we write WI as
∑

m∈I wm and nI for
∑

m∈I nm. For a matrix A ∈ Rm×n,

we denote the (i, j)-th covariate of A by [A]i,j or Ai,j, and the i-th row (resp., the j-th

column) by Ai,· (resp., A·,j). For two real numbers a and b, we write a ∨ b and a ∧ b for

max{a, b} and min{a, b}, respectively. For an event E, we write 1(E) for the indicator of

the event. We use the Bachmann-Landau asymptotic notations Ω(·), Θ(·), O(·) to absorb

constant factors, and use Ω̃(·), Õ(·) to also absorb logarithmic factors. Furthermore, we

use probabilistic notations such as OP (a{nm}Mm=1
) to denote quantities that are bounded by

a{nm}Mm=1
with overwhelming probabilities as minm∈[M ] nm → ∞. For a number x ∈ R, we

use (x)+ to denote its non-negative part, i.e., x1(x ≥ 0).

2 Multitask Linear Regression

In this section, we study multitask linear regression under sparse heterogeneity with M > 0

tasks, each of which is associated with an unknown task-specific parameter β(m) ∈ Rd for

m ∈ [M ]. For a covariate vector x
(m)
i associated with task m, the outcome follows the

linear model
y
(m)
i = ⟨x(m)

i , β(m)⟩+ ε
(m)
i ,

where ε
(m)
i is noise satisfying conditions specified below. We observe nm > 0 i.i.d. vectors

of covariates for each task m; the sample sizes nm may vary with m. For each task m, we

denote by X(m) ∈ Rnm×d the matrix whose rows are the observed features, and by Y (m) ∈
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Rnm the vector of corresponding observed outcomes. Our goal is to use {(X(m), Y (m))}Mm=1 to

estimate the parameter β(m) for each task m. We denote by X the n[M ]×d concatenation of

all matrices {X(m)}Mm=1, where n[M ] ≜
∑M

m=1 nm denotes the total sample size. We consider

the following condition, which will enable us to pool information to improve estimation:

Condition 1 (Sparse heterogeneity). There exists an unknown s ∈ {0, . . . , d} and a

common global parameter β⋆ ∈ Rd such that for each m ∈ [M ], ∥β(m) − β⋆∥0 ≤ s.

We remark that while a common upper bound s is assumed in Condition 1, most of

our methods also adapt to the case where the ℓ0-heterogeneity between β(m) and β⋆ differs

across tasks i.e., ∥β(m) − β⋆∥0 ≤ sm, and results depend on the individual values of sm as

opposed to just their maximum; see Remark 2 for more details. The heterogeneity level s

(or {sm}Mm=1) and the global parameter β⋆ ∈ Rd may not be identifiable, but our results

apply simultaneously to all possible choices of β⋆ and s (or {sm}Mm=1) satisfying Condition 1.

We will also require several additional standard assumptions. In particular, in the main

text, we consider Gaussian noise to simplify the analysis (Condition 2). We also provide

similar results for Orlicz-norm-bounded noise, covering sub-Gaussian and sub-exponential

noises, in Appendix D at the cost of an auxiliary high-order term in n in our rates.

Condition 2 (Gaussian noise). For each m ∈ [M ], and some σm ≥ 0, m ∈ [M ], the

noises {ε(m)
i }

nm
i=1 are i.i.d. random variables with ε

(m)
i ∼ N (0, σ2

m).

We next introduce a customary condition on task-wise distributions.

Condition 3 (Covariate distribution). There are constants L ≥ µ > 0 such that for

any m ∈ [M ], {x(m)
i }

nm
i=1 are the L-sub-Gaussian and independently distributed covariates

with zero mean and covariance Σ(m) ⪰ µId, where ⪰ denotes the Loewner order.
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Throughout the paper, we focus on investigating the impact of sample sizes {nm}Mm=1,

variances {σ2
m}Mm=1, dimension of covariates d and heterogeneity s, while omitting the de-

pendence on the other problem characteristics, including µ and L. When leveraging het-

erogeneous datasets, the performance can be hampered by very small and noisy datasets

(e.g., Akbani et al., 2004; Kotsiantis et al., 2006; Chawla, 2010, etc). To prove optimal

estimation errors, we will require Condition 4 to mildly constrain the sample sizes of the

input datasets.

Condition 4 (Sample size constraint). We assume nm ≥ c ln(d)d for a sufficiently

large constant c. For the case of homogeneous variances σ2
1 = · · · = σ2

M , there is a

constant cs ≥ 1 such that ln((d/s) ∧ (n[M ]/minm∈[M ] nm))
2maxm∈[M ] nm ≤ csn[M ] and

maxm∈[M ]
√
nm

∑M
m=1

√
nm ≤ csn[M ]. For the case of different variances, we require the

same inequalities to hold for the rescaled sample sizes ñm ≜ nm/σ
2
m.

Condition 4 is satisfied by the ideal balanced case where nm = Θ(n) and σm = Θ(σ)

for some n > 0 and σ > 0, which implies maxm∈[M ]
√
nm

∑M
m=1

√
nm = O(n[M ]) and

ln(n[M ]/minm∈[M ] nm)
2maxm∈[M ] nm = O(ln(M)2n[M ]/M), leading to cs = O(1). However,

Condition 4 also covers more skewed sample sizes, including the singly dominant case where

n1 = Θ(nM c) with some c ∈ [0, 1) and nm = Θ(n) for m ≥ 1.

2.1 Algorithm Overview

We now introduce the MOLAR method, which consists of two steps: collaboration and

covariate-wise shrinkage. Here, MOLAR mainly concerns the case where nm ≫ d for all

m ∈ [M ] in the main text and a variant applicable to nm < d is provided in Appendix E. In

the first step, we estimate the global parameter β⋆ via the covariate-wise weighted median of

the OLS estimates {β̂(m)
ind }Mm=1, where the weights are adjusted according to the sample sizes

and noise variances of each task. Recall that a weighted median WMed({zm}Mm=1; {wm}Mm=1)
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Algorithm 1 MOLAR: Weighted-median-based Multitask Linear Regressors
Input: {(X(m), Y (m))}Mm=1, thresholds {γm}Mm=1, weights {wm}Mm=1

for m ∈ [M ] do

Let β̂
(m)
ind = (X(m)⊤X(m))−1X(m)⊤Y (m) be the OLS estimator for dataset (X(m), Y (m))

end for
Let β̂⋆ = WMed({β̂(m)

ind }Mm=1; {wm}Mm=1) be the covariate-wise weighted median
for m ∈ [M ] and k ∈ [d] do

/* Option I: hard thresholding */

β̂
(m)
MOLAR,k = β̂⋆

k if |β̂⋆
k − β̂

(m)
ind,k| ≤ γm

√
[(X(m)⊤X(m))−1]k,k else β̂

(m)
ind,k

/* Option II: soft thresholding */

β̂
(m)
MOLAR,k = β̂⋆

k + SoftThresholding(β̂
(m)
ind,k − β̂⋆

k ; γm
√

[(X(m)⊤X(m))−1]k,k)

end for
Output: {β̂(m)

MOLAR}Mm=1

of the scalar variables {zm}Mm=1 and non-negative weights {wm}Mm=1 (not necessarily sum-

ming up to one) is defined as any of the minimizers to the function z 7→
∑M

m=1wm|z− zm|.

Scaling all weights {wm}Mm=1 by a common factor leads to the same weighted median. In

particular, if w1 = · · · = wM , the weighted median recovers the classical median and thus

the weights can be omitted for clarity.

There are two key insights in this step. First, since the heterogeneity is sparse, for most

coordinates, most OLS estimates are unbiased for β⋆. Hence, to estimate those covariates

of the global parameter, we view the local estimates as potentially perturbed by outliers

and leverage robust statistical methods to mitigate their heterogeneity-incurred influence.

Second, the weighting mechanism allows OLS estimates from datasets with larger sizes and

less noise to contribute more to the global estimate β̂⋆. Notably, our work also presents a

novel non-asymptotic analysis of weighted medians, which can be of independent interest.

In the second step—covariate-wise shrinkage—we detect mismatched covariates between

task-wise OLS estimates {β̂(m)
ind }Mm=1 and the global estimate β̂⋆. Recall that the global and

task-wise parameters differ in only a few coordinates. For covariates k ∈ [d] such that
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|β̂⋆
k − β̂

(m)
ind,k| is below γm

√
v
(m)
k for some threshold γm and v

(m)
k ≜

√
[(X(m)⊤X(m))−1]k,k, we

may expect that β(m)
k = β⋆

k . Also, the estimate β̂⋆
k of β⋆

k can be more accurate than β̂
(m)
k for

β
(m)
k , as it is estimated collaboratively from multiple datasets. As a result, we can assign

β̂⋆
k as the final estimate β̂

(m)
MOLAR,k of β(m)

k if |β̂⋆
k− β̂

(m)
ind,k| ≤ γm

√
v
(m)
k . On the other hand, for

the covariates where the global and local parameters differ, i.e., β(m)
k ̸= β⋆

k , the threshold is

more likely to be exceeded. In this case, we keep the local estimate β̂
(m)
ind,k as β̂(m)

MOLAR,k. This

can be viewed as shrinkage of β̂(m)
ind,k towards β̂⋆

k via hard thresholding. Alternatively, to allow

a smooth transition, we can also conduct a soft thresholding step where the final estimate

β̂
(m)
MOLAR,k shifts β̂ind,k by γm

√
v
(m)
k when |β̂⋆

k−β̂
(m)
ind,k| > γm

√
v
(m)
k . The latter can be viewed as

shrinkage via the soft thresholding operator x 7→ SoftThresholding(x;λ) := sign(x)(|x|−λ)+

defined for any x ∈ R and λ ≥ 0. The two options have the same theoretical guarantees

but can differ slightly in practice.

While using two stages, our method does not require sample splitting. MOLAR requires

neither the knowledge of the heterogeneity bounds ∥β(m) − β⋆∥0 nor of the support sets of

{β(m) − β⋆}Mm=1.

2.2 Analysis of Estimation Error under Gaussian Noise

In this subsection, we provide theoretical results for MOLAR for a Gaussian noise; more

general noise is considered in the Appendix. The local OLS estimates β̂
(m)
ind can be writ-

ten as β̂
(m)
ind = (X(m)⊤X(m))−1X(m)⊤Y (m) = β(m) + (X(m)⊤X(m))−1X(m)⊤ε(m), where ε(m) ∼

N (0, σ2
mInm). Thus, denoting [(X(m)⊤X(m))−1]k,k as v

(m)
k for any k ∈ [d] and m ∈ [M ], we

have

β̂
(m)
ind,k | X

(m) ∼ N (β
(m)
k , v

(m)
k σ2

m). (1)

For each k ∈ [d], let Bk ≜ {m ∈ [M ] : β
(m)
k ̸= β⋆

k} be the set of unaligned tasks at covariate

k. For any 0 < η ≤ 1, we define the set of η-well-aligned covariates as
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Iη :=

{
k ∈ [d] :

M∑
m=1

1(m ∈ Bk)wm < ηW[M ]

}
, (2)

where W[M ] ≜
∑M

m=1wm. The η-well-aligned covariates are only used in the proof, not in

our algorithm. At each covariate k ∈ [d], for m ∈ [M ]\Bk, by (1), β̂(m)
ind,k is an unbiased

estimate of β⋆
k . When WBk

is relatively small compared to W[M ], the set {β̂(m)
ind,k}m∈Bk

of

estimates possibly biased for β⋆
k have small weights. We will show that the weighted median

can estimate β⋆
k accurately, despite the biased subset.

We first bound the estimation error of β̂⋆ for η-well-aligned covariates. To this end,

we need to characterize the estimation error of the weighted median of Gaussian inputs

with non-identical means and variances, as shown in Appendix C.1. Applying this to each

covariate k ∈ Iη with η ≤ 1/5, we find the following bounds for the estimation error of β̂⋆.

Proposition 1 (Error bound for well-aligned coordinates). Taking1 wm =

nm/σ
2
m for m ∈ [M ], under Conditions 2, 3, and 4, for any 0 < η ≤ 1

5
, k ∈ Iη, it holds

with probability at least 1−O((minm ñM/ñ[M ]) ∨ (s/d))−O(Mde−cminm nm) that

|β̂⋆
k − β⋆

k| = Õ

σw

WBk
+
(∑

m∈Bc
k
w2

m

)1/2
W[M ]

 ,

where σw := W−1
[M ]

∑M
m=1wm(σm/

√
nm) is the weighted average of standard deviations. In

particular, in the regime of balanced variances where σm = Θ(σ) for some σ > 0, we have

|β̂⋆
k − β⋆

k| = Õ

(
nBk

σ

n[M ]
√
maxm∈[M ] nm

+
σ

√
n[M ]

)
.

Remark 1 (Comparison with Xu and Bastani (2021)). When nm = Θ(n) and σm = Θ(σ)

for some n > 0 and σ > 0 and all m ∈ [M ], Xu and Bastani (2021) estimate β⋆ through a
1Throughout the paper, we assume {σm}Mm=1 are known as they can be easily estimated using the

OLS-based formula σ̂2
m = ∥Y (m) −X(m)β̂

(m)
ind ∥22/(nm − d). Experiments with estimated variances can be

found in Appendix J.3.1.
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trimmed mean of the individual OLS estimates. Then, a Lasso-based shrinkage is used to

estimate the local parameters {β(m)}Mm=1. The Lasso step is more computationally expensive

than our covariate-wise procedures. Moreover, the trimmed mean is less effective than the

median in handling sparse heterogeneity. First, setting the fraction of the data trimmed

ω, taken as
√
s/d in Xu and Bastani (2021, Corollary 1), requires knowing the sparse

heterogeneity level s. In contrast, the weighted median is applicable to all potential values

of s. Second, using a single trimming proportion ω is suboptimal, as trimming fewer local

estimates for covariates with more aligned tasks can improve accuracy. The best choice of

ω =
√

s/d yields ∥β̂(m) − β(m)∥1 = ÕP ((d/
√
M +

√
sd)σ/

√
n), which is larger than the

minimax optimal rate by a factor of
√

d/s (see Theorem 1 and 2 for optimality).

Proposition 1 provides an upper bound relating to the weighted frequency WBk
/W[M ] of

misalignment. This result cannot be obtained by directly applying concentration inequal-

ities to the estimates, due to heterogeneity. Instead, we analyze the concentration of the

empirical weighted (1/2±WBk
/W[M ])-quantiles to mitigate the influence of heterogeneity.

The constant 1/5, which restricts the heterogeneity, is not essential and is chosen for clarity.

With more cumbersome calculations, it can be replaced with any number below 1/2.

While estimating β⋆ is not our main goal, based on Proposition 1, we readily obtain

the following bound for estimating β⋆ by choosing η = maxk∈[d] WBk
/W[M ], so [d] = Iη,

and summing up the errors over all covariates. Noting that
∑

k∈[d] WBk
/W[M ] = s/d,

Corollary 1 reveals that the global parameter can be accurately estimated if heterogeneity

happens roughly uniformly across all covariates.

Corollary 1 (Error bound for global parameter). Taking wm = nm/σ
2
m for all

m ∈ [M ], under Conditions 2, 3, and 4, let β̂⋆ be obtained from Algorithm 1 and suppose

WBk
/W[M ] = O(s/d) for any k ∈ [d]. For any p ∈ {1, 2}, it holds with probability 1 −
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O((ñM/ñ[M ]) ∨ (s/d))−O(Mde−cminm nm) that

∥β̂⋆ − β⋆∥pp = Õ

σp
w

 sp

dp−1
+

d
(∑M

m=1w
2
m

)1/2
W[M ]


 ,

where σw := W−1
[M ]

∑M
m=1 wm(σm/

√
nm) . In particular, in the regime of balanced variances

where σ2
m = Θ(σ2) for some σ > 0, we have

∥β̂⋆ − β⋆∥pp = Õ

(
spσp

maxm∈[M ] n
p/2
m dp−1

+
dσp

n
p/2
[M ]

)
.

Proposition 1 above shows that the coefficients of the well-aligned covariates are accu-

rately estimated. Thus one can use the global estimate β̂⋆ for the well-aligned covariates

where the global parameter β⋆ also aligns with the local parameter β(m). The coefficients

of the remaining covariates, which are either poorly aligned or do not satisfy β⋆
k = β

(m)
k ,

could be estimated by individual OLS estimates. In Theorem 1 below, we argue that with

high probability, properly chosen thresholds achieve this. The proof is in Appendix C.4.

Theorem 1 (Error bound for task-wise parameters). Under Conditions 1, 2, 3

and 4, taking γm = c1
√

ln((n[M ]/nm) ∧ d)σm for all m ∈ [M ] with c1 ≥ 1 being constant,

with β̂
(m)
MOLAR from Algorithm 1 using either Option I or II, it holds for any p ∈ {1, 2},

m ∈ [M ] that

∥β̂(m)
MOLAR − β(m)∥pp = ÕP

sσp
m

n
p/2
m

+
d(∑M

m=1 nm/σ2
m

)p/2
 . (3)

In particular, in the regime of balanced variances where σ2
m = Θ(σ2) for some σ > 0, we

have

∥β̂(m)
MOLAR − β(m)∥pp = ÕP

(
sσp

n
p/2
m

+
dσp

n
p/2
[M ]

)
. (4)

Remark 2 (Varying heterogeneity levels). While we assume the task-wise hetero-
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geneity is constrained by a common parameter s in Condition 1 for simplicity, we remark

that similar theoretical results hold under varying heterogeneity levels where ∥β(m)−β⋆∥0 ≤

sm for some sm ∈ {0, 1, . . . , d} and all m ∈ [M ]. Considering σm = Θ(σ) for illustration,

where we have
∑

k∈[d] WBk
/W[M ] ≍

∑
k∈[d] nmsm/n[M ] =: s̄w, Our theory implies

∥β̂(m)
MOLAR − β(m)∥pp = ÕP

(
sm ∨ s̄wσ

p

n
p/2
m

+
dσp

n
p/2
[M ]

)
.

Therefore, a few outlier tasks with large ∥β(m)−β⋆∥0 (at most d) do not heavily impact the

ultimate task-wise estimation errors in MOLAR, revealing its robustness.

Remark 3 (Extensions of MOLAR). MOLAR can be extended beyond parameter es-

timation in linear models. For example, MOLAR is readily extended to generalized linear

models by adjusting the individual maximum likelihood estimates (MLEs) {β̂(m)
ind }Mm=1 and

adjusting the data matrix X(m)⊤X(m) with the inverse link function. A similar guarantee

can be established for sufficiently large sample sizes thanks to the asymptotic normality of

task-wise MLEs. For details, we refer to Appendix G.

In addition, one can construct confidence intervals for task-wise parameters {β(m)}Mm=1

by leveraging the improved concentration of β̂⋆
k for well-aligned covariates k. These can

have shorter lengths than the canonical single-task OLS intervals; see Appendix F.

The upper bound in (4) consists of two terms. Taking p = 2 for illustration, the first

term—s/nm—is independent of the dimension d, and is a factor d/s smaller than the

minimax optimal rate d/nm of estimation in a single linear regression task (Lehmann and

Casella, 1998). Meanwhile, the second, dimension-dependent, term—d/n[M ]—is n[M ]/nm

times smaller than d/n, since it depends on the total sample size n[M ] used collaboratively.

This brings a significant benefit under sparse heterogeneity, i.e., when s ≪ d. Therefore,
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Table 1: Bounds on the estimation error ∥β̂(m) − β(m)∥1 of various methods under balanced
variances i.e., σ2

m = Θ(σ2) for all m ∈ [M ]: β(m) is the ground-truth parameter, β̂(m) is the
estimator, δ(m) = β(m) − β⋆ is a non-vanishing measure of heterogeneity. The standard regime
shows the results for balanced datasets, i.e., nm = Θ(n) for all m ∈ [M ]. The data-poor regime
shows the results for transfer learning in the (M + 1)-th task with a potentially small dataset:
notably, MOLAR and the minimax lower bound requires nM+1 = O(n[M ](s/d)

2) while the others
require nM+1 = O(minm∈[M ] nm/d2). See Xu and Bastani (2021, Sec 3.6) for more details about
the baseline methods. Numerical constants and logarithmic factors are omitted for clarity.

Method Standard Regime Data-poor Regime

Individual OLS (Lehmann and Casella, 1998) σd/
√
n σd/

√
nM+1

Individual LASSO (Tibshirani, 1996) σd/
√
n σd/

√
nM+1

Global OLS (Dobriban and Sheng, 2021) ∥δ(m)∥1 + σd/
√
Mn ∥δ(M+1)∥1 + σ/

√
n[M ]

Robust Multitask (Xu and Bastani, 2021) σ
√
sd/
√
n+ σd/

√
Mn σs/

√
nM+1

MOLAR (Theorem 1) σs/
√
n+ σd/

√
Mn σs/

√
nM+1

Lower Bound (Theorem 2) σs/
√
n+ σd/

√
Mn σs/

√
nM+1

our method has a factor of min{n[M ]/nm, d/s} improvement in accuracy, compared to the

optimal rate for a single linear regression task.

Algorithm 1 is applicable to any value of heterogeneity level s. In particular, when the

heterogeneity is dense, i.e., s = Ω(d), our result recovers the optimal estimation error rate

d/nm in single-task linear regression. Therefore, the collaboration mechanism in Algorithm

1 does not harm the rate, regardless of the level of heterogeneity.

Theorem 1 also implies that the collaborative estimator β̂⋆ is useful in transfer learning

(Tian and Feng, 2022; Li et al., 2020), where, given a number of “source” tasks with large

samples, the goal is to maximize performance on a specific “target” task with a small sample.

Corollary 2 (Transfer learning for a data-poor task). In the regime of balanced

variances, when a new (M + 1)-th task has a small dataset with nM+1 = O(n[M ](s/d)
2/p),

the ℓ1 and ℓ2 estimation errors for the task parameter using MOLAR are ÕP (σs/
√
nM+1)

and ÕP (σ
2s/nM+1), respectively.

The rates in Corollary 2 do not depend on the feature dimension d; in contrast to a

linear dependence for the individual OLS estimate. In Table 1, we compare MOLAR with
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the method from Xu and Bastani (2021) and other baseline methods, in terms of the ℓ1

estimation error, in both the standard regime where n1 = · · · = nM = n and the data-poor

regime where nM+1 is small. We find that MOLAR outperforms all methods compared in

both regimes.

2.3 Lower Bound

To complement our upper bounds, we provide minimax lower bounds for our multitask lin-

ear regression task under sparse heterogeneity. We consider the best estimators {β̂(m)}Mm=1

that leverage heterogeneous datasets, in the worst-case sense over all global parameters

β⋆ ∈ Rd, task-wise parameters {β(m)}Mm=1 each in Bs(β
⋆) := {β ∈ Rd : ∥β − β⋆∥0 ≤ s}, as

well as covariance matrices {Σ(m)}Mm=1 each in Aµ,L ≜ {Σ ∈ Rd×d : Σ positive semi-definite,

µId ⪯ Σ ⪯ LId}:

M(s, d, µ, L,m, p, {nm}Mm=1}, {σm}Mm=1) := inf
β̂(m)

sup
β⋆∈Rd, {β(m)}Mm=1⊆Bs(β⋆)

{Σ(m)}Mm=1⊆Aµ,L

∥β̂(m) − β(m)∥pp. (5)

The minimax risk (5) characterizes the best possible worst-case estimation error under our

heterogeneous multitask learning model.

Since the supremum is taken over all parameters {β(m)}Mm=1 ⊆ Rd such that ∥β(m) −

β⋆∥0 ≤ s for some β⋆ ∈ Rd, we can consider two representative cases. First, the ho-

mogeneous case where β(1) = · · · = β(m) = β⋆; which reduces to a single linear regres-

sion task with n[M ] data points and varying noise variances, leading to a lower bound

ΩP (d/(
∑M

m=1 nm/σ
2
m)

p/2) for the minimax estimation error. Second, in the independent

s-sparse case where β⋆ = 0 and ∥β(m)∥0 ≤ s for all m ∈ [M ], clearly ∥β(m) − β⋆∥0 ≤ s

and thus {β(m)}Mm=1 ⊆ Bs(β
⋆). By constructing independent priors for {β(m)}Mm=1, we show

that only data points sampled from the model with parameter β(m) are informative for
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estimating β(m). We then show a lower bound of Ω(sσp
m/n

p/2
m ) for the minimax risk. In

particular, our lower bound for the ℓ1 error strengthens the existing lower bound of or-

der Ω(s1/2σm/n
1/2
m ) for sparse linear regression (Raskutti et al., 2011). Combining the two

cases, we prove the following lower bound. The formal proof is in Appendix C.5.

Theorem 2 (Minimax lower bound for linear regression under sparse het-

erogeneity). For any m ∈ [M ], p ∈ {1, 2}, it holds that

M(s, d, µ, L,m, p, {nm}Mm=1}, {σm}Mm=1) = Ω̃P

sσp
m

n
p/2
m

+
d(∑M

m=1 nm/σ2
m

)p/2
 .

Theorems 2 and 1 imply that MOLAR is minimax optimal up to logarithmic terms.

3 Linear Contextual Bandit

In this section, we study multitask linear contextual bandits as an application of our MO-

LAR method. A contextual bandit problem (Woodroofe, 1979) consists of data collection

over several rounds t = 1, . . . , T , where T > 0 is referred to as the time horizon. At each

round, an analyst observes a context—covariate—vector, and based on all previous obser-

vations, chooses one of K options—referred to as arms—observing the associated reward.

The goal is to minimize the regret compared to the best possible choices of arms. In linear

contextual bandits, two settings are widely studied.

In the first setup, referred to as Model-C by Ren and Zhou (2023), at each round t ∈ [T ],

the analyst first observes a set of K d-dimensional contexts {xt,a}a∈[K] in which xt,a is

associated with arm a. If the analyst selects action a ∈ [K], then a reward yt = ⟨xt,a, β⟩+εt

is earned, where β ∈ Rd is the unknown parameter vector associated with the bandit and

{εt}∞t=0 is a sequence of i.i.d. noise variables. In the second setup, referred to as Model-P

by Ren and Zhou (2023), at each round t ∈ [T ], the analyst instead only observes a single
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d-dimensional context xt. Then if action a ∈ [K] is chosen, the analyst earns the reward

yt = ⟨xt, βa⟩ + εt, where βa ∈ Rd is the unknown parameter vector associated with arm a

and {εt}∞t=0 is still a sequence of i.i.d. noise variables.

Both models have been studied: for instance Model-C in Han et al. (2020); Oh et al.

(2021); Ren and Zhou (2023) and Model-P in Bastani and Bayati (2020); Bastani et al.

(2021). We extend these models to the multitask setting. We present Model-C here, and

state a parallel set of results under Model-P in Appendix I. We consider M K-armed bandit

instances, where the m-th is associated with a parameter β(m) ∈ Rd. Each bandit m ∈ [M ]

has an activation probability pm ∈ [0, 1]. At each round t within the time horizon T , each

bandit m is independently activated with probability pm; and we observe contexts for the

activated bandits. The parameters {pm}Mm=1 model the frequency of receiving contexts.

When p1 = · · · = pm = 1, contexts for all bandit instances are always observed. We denote∑
m∈I pm as pI for any I ⊆ [M ]. Without loss of generality, we assume p1 ≥ · · · ≥ pM .

The analyst observes a set of K d-dimensional contexts—covariates, feature vectors—

{x(m)
t,a }a∈[K] for each activated bandit instance m ∈ St in the set St of activated bandit

instances at time t. The contexts {x(m)
t,a }a∈[K], for each m ∈ St in each round are sampled

independently. Using the observed contexts, and all previously observed data, the analyst

selects actions a
(m)
t ∈ [K] for each activated bandit instance m ∈ St and earns the reward

y
(m)
t = ⟨x(m)

t,a
(m)
t

, β(m)⟩+ε
(m)
t ∈ R, where ε(m)

t are, for t ∈ [T ],m ∈ St, i.i.d. noise variables. To

apply MOLAR in this setting, we require Condition 5 over all bandit parameters. Compared

to Condition 1 for linear regression, this requires all parameters to have a bounded ℓ2 norm,

as is common in the area (see e.g., Han et al. (2020); Bastani and Bayati (2020)).

Condition 5 (Sparse heterogeneity & Boundedness). There is an unknown global

parameter β⋆ ∈ Rd and value s ∈ {0, 1, . . . , d} such that ∥β(m)−β⋆∥0 ≤ s for any m ∈ [M ].
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Further, ∥β(m)∥2 ≤ 1 for all m ∈ [M ].

As before, our analysis applies to each β⋆, s for which the condition holds.

Condition 6 (Frequency constraint). We have minm∈[M ](p1∨ (p[M ]/m))/pm ≤ cf for

an absolute constant cf , where p[M ] ≜
∑M

m=1 pm .

Following previous literature studying Model-C, we state other standard conditions as

follows. The Gaussian noise Condition 7 is used only for simplicity, as our results can be

extended to more general noise with a bounded Orlicz norm by leveraging the results of

the offline linear regression with general noise in Appendix D.

Condition 7 (Gaussian noise). The noise variables {ε(m)
t }∞t=1 are i.i.d. N (0, 1) variables.

Next, we require the contexts to be sub-Gaussian. Since bounded contexts are sub-

Gaussian, Condition 8 is weaker than the assumption of bounded contexts commonly used

in the literature on contextual bandits (Xu and Bastani, 2021; Bastani et al., 2021; Bastani

and Bayati, 2020; Kim and Paik, 2019).

Condition 8 (Sub-Gaussianity). There is L ≥ 0, such that for each m ∈ [M ], t ∈ [T ],

and a ∈ [K], x(m)
t,a is L-sub-Gaussian.

We next consider Condition 9, which ensures sufficient exploration even with a greedy

algorithm (Ren and Zhou, 2023).

Condition 9 (Diverse context). There are positive constants µ and cx such that for

any β ∈ Rd, vector v ∈ Rd, and m ∈ [M ], it holds that P(⟨x(m)
t,a⋆ , v⟩2 ≥ µ) ≥ cx where

a⋆ = argmax
a∈[K]

⟨x(m)
t,a , β⟩ and the probability is taken over the joint distribution of {xt,a}Ka=1.

Remark 4. The “diverse context” condition, which is widely used in the literature on bandits

and reinforcement learning, simplifies the algorithmic design and the corresponding proof.
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The condition or equivalent settings have been used in e.g., Bastani et al. (2021, Lemma

1), Oh et al. (2021, Condition 4), Cella et al. (2022, Condition 2), Hao et al. (2021,

Definition 3.1), Chakraborty et al. (2023, Condition 2.2 (c)), Han et al. (2020). Condition

9 encompasses many classical distributions, e.g., Gaussian contexts where xt,a ∼ N (0,Σ)

with Σ ⪰ 16µId for each a ∈ [K], and sub-Gaussian distributions. See Ren and Zhou (2023,

Section 2.3) for more discussion. In Conditions 8 and 9, we do not require {x(m)
t,a }Ka=1 to be

independent across actions a ∈ [K].

On the other hand, we remark that the condition is made only for simplicity and to

show that MOLAR can be applied in an important online setting. One can readily extend

MOLARB to other bandit algorithms with exploration phases (see e.g., Bastani and Bayati

(2020); Xu and Bastani (2021)).

3.1 Algorithm Overview

We now introduce our MOLARB algorithm, see Algorithm 2. MOLARB manages

multiple bandit instances in a batched way, as in Han et al. (2020); Ren and Zhou (2023).

We split the time horizon T into batches that double in length, i.e., |Hq| = 2q−1|H0| for all

q ≥ 1, yielding Q = O(log2(T/|H0|)) batches. Within each batch Hq, each bandit instance

m leverages the current estimate β̂
(m)
q of the parameter β(m) without further exploration.

These estimates are updated at the end of a batch, based on all previous observations.

Compared to existing methods, MOLARB has two novel features: novel estimates and

fine-grained collaboration. First, in the single-bandit regime, the estimate β̂(m) is often

obtained by using OLS (Goldenshluger and Zeevi, 2013), LASSO (Bastani and Bayati,

2020), and ridge regression (Han et al., 2020). In the multi-bandit regime, we use our

MOLAR estimators to improve accuracy based on all instances. If used at each time

step, MOLAR induces strong correlations between the observations, as well as between
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Algorithm 2 MOLARBandit: Multitask Bandits with MOLAR estimates
Input: Time horizon T , β̂(m)

−1 = 0, X(m)
q = ∅, and Y

(m)
q = ∅ for m ∈ [M ], initial batch

size H0 and batch H0 = [H0], number of batches Q = ⌈log2(T/H0)⌉
Define batches Hq = {t : 2q−1H0 < t ≤ min{2qH0, T}}, for q = 1, . . . , Q
for t = 1, · · · , T do

for each bandit in parallel do
if t ∈ Hq and bandit instance m is activated then

Choose a
(m)
t = argmaxa∈[K]⟨x(m)

t,a , β̂
(m)
q−1⟩, breaking ties randomly, and gain reward

y
(m)
t

Augment observations X
(m)
q ← [X

(m)⊤
q , x

(m)

t,a
(m)
t

]⊤ and Y
(m)
q ← [Y

(m)⊤
q , y

(m)
t ]⊤

end if
end for
if t = 2qH0, i.e., batch Hq ends then

Let nm,q = |Y (m)
q | and Cq = {m ∈ [M ] : nm,q ≥ 2Cb(ln(MT ) + d ln(L ln(K)/µ))}

Call MOLAR({(X(m)
q , Y

(m)
q )}m∈Cq) to obtain {β̂(m)

q }m∈Cq

for m ∈ [M ]\Cq do

Let β̂
(m)
q = β̂

(m)
q−1, X

(m)
q+1 = Xm

q , and Y
(m)
q+1 = Y m

q

end for
end if

end for

the estimates {β̂(m)
ind }Mm=1 from Algorithm 1, across all instances. This makes the median

potentially inaccurate (see Lemma C.2). As a remedy, batching ensures that our estimates

in the current batch are independent conditional on the observations from previous batches.

Batching also reduces computational costs.

Second, as indicated by Condition 3 from Section 2.2, MOLAR requires the eigenvalues

of the non-centered empirical covariance matrices of the datasets in the collaboration to

be lower bounded. We will show that this holds with high probability even when the arms

are adaptively chosen (Lemma H.1 in Appendix H.1) when the sample size nm,q is of order

Ω̃(d). However, this may fail within a small batch Hq for bandit instances that rarely

observe contexts because of their small activation probabilities, so m /∈ Cq, with

Cq = {m ∈ [M ] : nm,q ≥ 2Cb(ln(MT ) + d ln(L ln(K)/µ))},
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for Cb defined in Lemma H.1. Thus we neither involve these instances in MOLAR, nor

update their parameter estimates until entering a large batch. In these instances, the

observations are not used to update estimates, and are merged into future batches.

3.2 Regret Analysis

Due to the differences in the activation probabilities {pm}Mm=1, the number of observed

contexts and the regret of each bandit instance can vary greatly. Therefore, we consider

the following form of individual regret: given a time horizon T ≥ 1 and a specific algorithm

A that produces action trajectories {a(m)
t }t∈[T ],m∈[M ], we define the cumulative regret for

each instance m ∈ [M ] as

R
(m)
T (A) :=

T∑
t=1

E
[
max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St)
]

where St is the random set of activated bandits at time t.

After showing that the empirical covariance matrices are well-conditioned with high

probability at the end of each batch in Lemma H.1, we leverage results from Section 2.2 to

show that the MOLAR estimates {β̂(m)
q }m∈Cq are accurate. This also requires controlling

{nm,q}m∈Cq to meet the sample size constraint (Condition 4) with a high probability, based

on Condition 6. This result is included in Lemma 1 and is proved in Appendix H.2.

Lemma 1 (Parameter estimation bound for heterogeneous bandits). Under

Conditions 5-9, for any 0 ≤ q < Q, and2 τ = argminm∈[M ](p1 ∨ p[M ]/m))/pm, if |Hq| ≥

2Cb(ln(MT )+d ln(L ln(K)/µ))/pτ with Cb defined in Lemma H.1, it holds with probability

at least 1− 2/T (over the randomness of {X(m)
q }Mm=1) that for all m ∈ Cq,

E[∥β̂(m)
q − β(m)∥22 | (X(m)

q , Y (m)
q )m∈Cq ] = Õ

(
1

|Hq|

(
s

pm
+

d

p[M ]

))
,

2We choose the largest index achieving the minimum.
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where logarithmic factors and quantities depending only on cx, cf are absorbed into Õ(·).

Based on Lemma 1, we can bound the individual regret as follows; with a proof in

Appendix H.3.

Theorem 3 (Individual regret upper bound for heterogeneous bandits).

Under Conditions 5-9, the expected regret of MOLARB, for any T ≥ 1 and 1 ≤ H0 ≤ d, is

bounded as

E[R(m)
T ] = Õ

(
d ∧ (Tpm) +

√(
s+

dpm
p[M ]

)
Tpm

)
(6)

where logarithmic factors as well as quantities depending only on cx, cf , L, and µ are

absorbed into Õ(·). In particular, if contexts are observed for all bandits at all times, so

p1 = · · · = pm = 1, (6) implies

E[R(m)
T ] = Õ

(
d ∧ T +

√(
s+

d

M

)
T

)
.

For a single contextual bandit without collaboration, when T = Ω(d2), the minimax

optimal regret bound is Θ̃(
√
dT ), up to logarithmic factors (Han et al., 2020; Chu et al.,

2011; Auer, 2002). Theorem 3 implies a regret bound of order Õ(
√
(s+ d/M)T ), when

T = Ω(d2/(s+ d/M)), which shows a factor of min{M,d/s}1/2 improvement. Similarly to

Theorem 1, Algorithm 2 is applicable to any heterogeneity level s. When the heterogeneity

is non-sparse, i.e., s = Ω(d), Theorem 2 recovers the optimal regret Θ̃(
√
dT ) for a single

bandit. Thus, the collaboration mechanism in Algorithm 2 is always benign, regardless of

the heterogeneity.

3.3 Lower Bound

To complement our upper bound, we also present a minimax regret lower bound that

characterizes the fundamental learning limits in multitask linear contextual bandits under
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sparse heterogeneity. Similar to Theorem 2, Theorem 4 also leverages two representative

cases: the homogeneous case where β(1) = · · · = β(m) = β⋆ and the s-sparse case where

β⋆ = 0 and ∥β(m)∥0 ≤ s for all m ∈ [M ]. The two cases yield a lower bound of orders

Ω(
√
dTp2m/p[M ]) and Ω(

√
sTpm), respectively. For each case, the proof outline is similar

to the lower bound from Han et al. (2020) in the single-bandit regime by additionally

incorporating the probabilistic activations. We set a uniform prior for the parameters

and translate the regret to a measure characterizing the difficulty of distinguishing two

distributions. The difficulty—and therefore the regret—is then quantified and bounded via

Le Cam’s method (Tsybakov, 2008). Since our task-specific regret in the multitask regime

is different from the standard regret in the single-task regime, the proof requires some novel

steps to handle the activation sets St; see Appendix H.4.

Theorem 4 (Individual regret lower bound for heterogeneous bandits).

Given any 1 ≤ s ≤ d and {pm}Mm=1 ⊆ [0, 1], for any m ∈ [M ], when T ≥ max{(d +

1)/p[M ], (s + 1)/pm}/(16L) + 1, there exist {β(m)}a∈[K],m∈[M ] satisfying Condition 5, and

distributions of contexts satisfying Condition 8 and 9, such that for any online Algorithm

A and for any m ∈ [M ],

E[R(m)
T (A)] = Ω

(√(
s+

dpm
p[M ]

)
Tpm

)
.

In particular, when pm = 1 for all m ∈ [M ], E[R(m)
T (A)] = Ω

(√
(s+ d/M)T

)
.

Theorem 4 and 3 imply that MOLARB is minimax optimal up to logarithmic terms.

4 Experiments

In this section, we evaluate the performance of our method in both offline and online

scenarios with synthetic and empirical datasets. We provide an overview of the experiments
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Figure 2: Average ℓ1 estimation error for multitask linear regression. (Left): Fixing s =
20, M = 30 and varying n. (Middle): Fixing s = 20, n = 5, 000 and varying M . (Right):
Fixing M = 30, n = 5, 000 and varying s. The standard error bars (barely visible) are
obtained from ten independent trials.

here and provide the remaining details in Appendix J. For linear regression, we evaluate

individual OLS estimates, LASSO estimates, a global OLS estimate via data pooling, the

robust multitask estimate (Xu and Bastani, 2021), and our MOLAR estimates, denoted

by OLS, LASSO, Pool, RM, and MOLAR below. For contextual bandits, we evaluate

the OLS Bandit (Goldenshluger and Zeevi, 2013), LASSO Bandit (Ren and Zhou, 2023),

Trace Norm Bandit (Cella et al., 2022), Robust Multitask Bandit (Xu and Bastani, 2021),

and our MOLARB methods over multiple Model-C bandit instances3, denoted by OLSB,

LASSOB, TNB, RMB, and MOLARB below. OLSB and LASSOB act by treating M bandit

instances independently, either via OLS or LASSO. Trace Norm Bandit is a state-of-the-

art multitask bandit method that leverages trace—nuclear—norm regularized estimates,

improving accuracy when the parameters span a linear space of rank smaller than d. More

experimental details and results can be found in Appendix J.

4.1 Numerical simulations

Linear Regression. We first randomly sample β⋆ from the uniform distribution over the

(d − 1)-dimensional sphere Sd−1 where d = 300. From the d covariates of β⋆, we draw s

3A few multitask bandit are not obviously applicable to our setup: Soare et al. (2014); Gentile et al.
(2014) aggregate data from similar yet heterogeneous instances, leading to linear growth in regret; (Kveton
et al., 2021; Cella et al., 2020; Bastani et al., 2022) consider Bayesian meta-learning that require instances
to be observed sequentially rather than simultaneously to construct a prior for instances.
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covariates uniformly at random and randomly assign new values sampled from the standard

Gaussian distribution with re-normalization to preserve ∥β(m)∥2 = ∥β⋆∥ for all m ∈ [M ].

We repeat this procedure M times to obtain sparsely perturbed parameters {β(m)}Mm=1 ⊆

Sd−1. Then, M datasets {x(1)
i }ni=1, . . . , {x

(m)
i }ni=1 with i.i.d.N (0, Id) features are sampled for

each task m ∈ [M ], each containing n data points4. The outcomes {y(1)i }ni=1, . . . , {y
(m)
i }ni=1

are set as y
(m)
i = ⟨x(m)

i , β(m)⟩ + ε
(m)
i where ε

(m)
i are i.i.d. N (0, σ2) noise with σ = 0.1. We

conduct the simulations by varying the sample size n, the number of tasks M , and the

number of heterogeneous covariates s. As the datasets have equal sample sizes, we take

the averaged ℓ1 error 1
M

∑M
m=1 ∥β̂(m) − β(m)∥1 as the performance metric.

Since we have sparse heterogeneity, we expect RM and MOLAR to outperform baseline

methods, which is corroborated by the experimental results from Figure 2. For MOLAR,

the estimation error decreases as n and M increase and s decreases, as revealed by Theorem

1. Furthermore, MOLAR outperforms baseline methods for most values of n, M , and s.

Other methods outperform MOLAR when s is sufficiently large, as shown in the right panel

of Figure 2, which highlights the crucial role of sparse heterogeneity. However, we remark

that when s is close to d, the parameters {β(m)}Mm=1 are highly different, and no multitask

approaches can provably outperform the individual OLS estimates.

Figure 2 also supports the theoretical predictions from Table 1. OLS does not pool data

and thus its estimation error does not vary with M and s. Since the parameters are not

sparse, we see no benefit in using LASSO over OLS, and thus, their curves almost overlap.

Also, due to the heterogeneity, pooling all datasets introduces a non-vanishing bias when

M > 1; even for large n and M . Furthermore, these estimation errors grow as s grows, due

to the increasing heterogeneity. RM, while addressing heterogeneity, performs worse than
4We conduct similar experiments for correlated covariates and disparate task-wise sample sizes in Ap-

pendix J.3.2.
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Figure 3: Average ℓ1 estimation error for multitask linear regression with n = 10, 000 and
ρ = s/d fixed. (Left): ρ = 0.1. (Right): ρ = 0.2. The standard error bars are obtained
from ten independent trials.

MOLAR due to its sub-optimality discussed earlier.

We also perform simulations to support our theoretical results about the rate of the

estimation error of MOLAR, presented in Theorem 1. We fix n = 10, 000 and generate

{β(m)}Mm=1 in different dimensions d but with a constant ratio ρ = s/d. As can be seen in

Figure 3, when M and ρ = s/d are fixed, the estimation error of MOLAR grows linearly as

d increases. The slopes of the curves, corresponding to Θ(σ(ρ + 1/
√
M)/
√
n) in Theorem

1, decrease as M grows and ρ decays. This aligns with our theoretical results.

Linear Contextual Bandits. We set (d, s,M,K) = (30, 2, 20, 3) and randomly sample

the activation probabilities {pm}Mm=1 from the uniform distribution on [0, 1]. We then

sample the sparsely heterogeneous parameters {β(m)}Mm=1 ⊆ Sd−1 as in the linear-regression

experiments. For any activated bandit m at time t, we independently sample the contexts

{x(m)
t,a }a∈[K] from N (0, Id) and the sample reward noise ε

(m)
t ∼ N (0, σ2) with σ = 0.5.

We consider instances with a large, medium, and small activation probability respec-

tively, as shown in Figure 4. We observe that MOLARB outperforms all baseline methods.

The advantage over OLSB and LASSOB is substantial, as they do not leverage collabora-

tion across tasks. We observe that RMB and TNB outperform OLSB and LASSOB due

to regularization. TNB is slightly less accurate because the parameters do not necessarily

have a low-rank structure. Moreover, the difference between OLSB and LASSOB is small,
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Figure 4: Regret R(m)
T of instances with activation probability 0.778 (Left), 0.466 (Middle),

0.318 (Right), respectively, where shaded regions depict the corresponding 95% normal
confidence intervals based on standard errors calculated over twenty independent trials.

as the parameters are not sparse. Also, the cumulative regret of instances with smaller

activation probabilities is lower than of the ones with larger activation probabilities, due to

fewer rounds of decision-making. Further, MOLARB is computationally more efficient than

LASSOB, TNB, and RMB which require solving optimization problems in each update.

4.2 PISA Dataset

The Programme for International Student Assessment (PISA) is a large-scale interna-

tional study conducted by the Organisation for Economic Co-operation and Development

(OECD). The study aims to evaluate the quality of education systems around the world

by assessing the skills and knowledge of 15-year-old students in reading, mathematics, and

science. This dataset has been widely used to gain insights into the impact of factors includ-

ing teaching practices (OECD, 2019), gender (Stoet and Geary, 2018), and socioeconomic

status (Kline et al., 2019) on student academic performance.

In this experiment, we use a part of the PISA2012 data across M = 15 countries to

learn linear predictors for individual countries, treating each country as a task. After

basic preprocessing detailed in the Appendix J, we have 57 student-specific features and

a continuous response assessing students’ mathematics ability—the variable “PV1MATH”,

standardized. See Appendix J for additional experimental details including fractions of

data used for training, validation, and testing, hyperparameter choices, and robustness
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checks. Figure 1 plots the differences in the coefficients across countries. The structure of

sparse heterogeneity appears to be reflected in the dataset.

Our experiments include linear regression and contextual bandits. In linear regression,

we estimate the linear coefficients of the processed features for predicting the response

with the aforementioned estimation methods. We simulate the setup of Model-C as follows.

We read the records of two students from each country with an activation probability

proportional to its sample size. The goal in each round is to select the student with a

better ability in mathematics. Recall that in Model-C, a K-armed bandit observes K

contexts at a time, with a shared parameter across the contexts generating the rewards.

Accordingly, there are K = 2 arms and the reward is the mathematics score. Since the two

data points are randomly drawn from the dataset of the same country without replacement,

the population parameters are clearly identical.

Table 2: The ℓ1 estimation errors and the averaged relative error (A.R.E.) on the PISA
dataset, over 100 independent random data splits.
Country OLS LASSO Pool RM MOLAR
Mexico 1.35± 0.02 1.57± 0.02 2.11± 0.01 1.22± 0.01 1.32± 0.01
Italy 2.05± 0.04 1.59± 0.01 2.34± 0.01 1.53± 0.02 1.61± 0.02
Spain 2.00± 0.04 1.85± 0.02 2.64± 0.02 1.66± 0.02 1.67± 0.02
Canada 2.09± 0.03 2.02± 0.02 2.78± 0.01 2.05± 0.03 1.78± 0.03
Brazil 1.85± 0.03 1.80± 0.02 2.60± 0.01 1.60± 0.02 1.76± 0.02
Austrilia 2.52± 0.04 1.92± 0.02 2.15± 0.01 1.99± 0.02 1.76± 0.02
UK 2.53± 0.03 2.15± 0.02 2.32± 0.01 1.93± 0.02 1.70± 0.02
UAE 2.60± 0.05 2.61± 0.03 3.08± 0.01 2.36± 0.03 2.19± 0.03
Switzerland 2.94± 0.04 2.66± 0.03 3.29± 0.01 2.88± 0.03 2.59± 0.03
Qatar 2.85± 0.04 2.63± 0.04 4.24± 0.01 2.49± 0.04 2.56± 0.03
Colombia 2.89± 0.06 2.36± 0.02 2.91± 0.01 2.06± 0.02 2.25± 0.02
Finland 3.41± 0.05 2.29± 0.02 2.97± 0.01 2.65± 0.03 2.49± 0.03
Belgium 3.68± 0.06 2.87± 0.03 2.91± 0.01 2.95± 0.04 2.55± 0.03
Denmark 3.48± 0.06 2.70± 0.03 2.56± 0.01 2.23± 0.03 1.87± 0.02
Jordan 3.01± 0.05 2.57± 0.03 2.66± 0.01 2.28± 0.03 2.08± 0.03
A.R.E. 100% 85.72± 0.37% 106.05± 0.47% 81.30± 0.33% 76.93± 0.34%

For offline experiments, we show the ℓ1 estimation errors of all methods on all individual
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Figure 5: Regret R
(m)
T of Canada, UAE, and Denmark of the PISA dataset. The shaded

regions depict the corresponding 95% normal confidence intervals based on standard errors
calculated over twenty independent trials.

countries in Table 2. The best result, i.e., outperforming all others regardless of standard

deviations, is in bold font. For a global comparison, we define the averaged relative error∑(m)
m=1 ∥β̂(m) − β(m)∥1/(

∑(m)
m=1 ∥β̂

(m)
ind − β(m)∥1) where β̂

(m)
ind is the individual OLS estimate

over task m. MOLAR outperforms other methods on most tasks and is the best in terms

of the global error metric.

For online experiments, we present the results for the tasks associated with Canada,

UAE, and Denmark—which have activation probabilities pm = 0.64, 0.32, 0.22, respectively—

in Figure 5. More figures can be found in Appendix J.2. Again, we see that MOLARB

performs favorably compared to the baselines. This is more pronounced for the tasks with

smaller activation probabilities, as suggested by the theory.

5 Conclusion

We consider multitask learning under sparse heterogeneity in both linear regression and

linear contextual bandits. For linear regression, we propose the MOLAR algorithm that

collaborates on multiple datasets, improving accuracy compared to existing multitask meth-

ods. Applying MOLAR to linear contextual bandits, we also improve current regret bounds

for individual bandit instances. To complement the upper bounds, we establish lower

bounds for multitask linear regression and contextual bandits, justifying the optimality of
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the proposed methods. Our methods are also extended to generalized linear models and

the construction of confidence intervals. Our experimental results support our theoretical

findings. Future directions include investigating problem-specific optimal methods whose

rate depends on {β(m)}Mm=1.

References
R. Akbani, S. Kwek, and N. Japkowicz. Applying support vector machines to imbalanced

datasets. In European Conference on Machine Learning, pages 39–50. Springer, 2004.
P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Ma-

chine Learning Research, 3:397–422, 2002.
L. Baardman, S. B. Boroujeni, T. Cohen-Hillel, K. Panchamgam, and G. Perakis. Detecting

customer trends for optimal promotion targeting. Manufacturing & Service Operations
Management, 25(2):448–467, 2023.

H. Bastani. Predicting with proxies: Transfer learning in high dimension. Management
Science, 67(5):2964–2984, 2021.

H. Bastani and M. Bayati. Online decision making with high-dimensional covariates. Op-
erations Research, 68(1):276–294, 2020.

H. Bastani, M. Bayati, and K. Khosravi. Mostly exploration-free algorithms for contextual
bandits. Management Science, 67(3):1329–1349, 2021.

H. Bastani, D. Simchi-Levi, and R. Zhu. Meta dynamic pricing: Transfer learning across
experiments. Management Science, 68(3):1865–1881, 2022.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A
theory of learning from different domains. Machine learning, 79:151–175, 2010.

L. Cella, A. Lazaric, and M. Pontil. Meta-learning with stochastic linear bandits. In
International Conference on Machine Learning, pages 1360–1370. PMLR, 2020.

L. Cella, K. Lounici, and M. Pontil. Multi-task representation learning with stochastic
linear bandits. arXiv preprint arXiv:2202.10066, 2022.

N. Cesa-Bianchi, C. Gentile, and G. Zappella. A gang of bandits. Advances in neural
information processing systems, 26, 2013.

S. Chakraborty, S. Roy, and A. Tewari. Thompson sampling for high-dimensional sparse
linear contextual bandits. In International Conference on Machine Learning, pages 3979–
4008. PMLR, 2023.

N. V. Chawla. Data mining for imbalanced datasets: An overview. Data mining and
knowledge discovery handbook, pages 875–886, 2010.

C. Chen, W. Xu, and L. Zhu. Distributed estimation in heterogeneous reduced rank regres-
sion: With application to order determination in sufficient dimension reduction. Journal
of Multivariate Analysis, 190:104991, 2022a.

H. Chen, W. Lu, and R. Song. Statistical inference for online decision making: In a
contextual bandit setting. Journal of the American Statistical Association, 116(533):
240–255, 2021.

X. Chen, Z. Lai, H. Li, and Y. Zhang. Online statistical inference for contextual bandits
via stochastic gradient descent. arXiv preprint arXiv:2212.14883, 2022b.

32



Y. Chen, Y. Wang, E. X. Fang, Z. Wang, and R. Li. Nearly dimension-independent sparse
linear bandit over small action spaces via best subset selection. Journal of the American
Statistical Association, pages 1–13, 2022c.

W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff functions.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 208–214, 2011.

L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai. Exploiting shared representations
for personalized federated learning. In International Conference on Machine Learning,
pages 2089–2099. PMLR, 2021.

K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. Journal of
Machine Learning Research, 9(8), 2008.

A. A. Deshmukh, U. Dogan, and C. Scott. Multi-task learning for contextual bandits.
Advances in neural information processing systems, 30, 2017.

E. Dobriban and Y. Sheng. Distributed linear regression by averaging. The Annals of
Statistics, 49:918–943, 2021.

S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei. Few-shot learning via learning the
representation, provably. arXiv preprint arXiv:2002.09434, 2020.

Y. Duan and K. Wang. Adaptive and robust multi-task learning. arXiv preprint
arXiv:2202.05250, 2022.

T. Evgeniou and M. Pontil. Regularized multi–task learning. In ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 109–117, 2004.

T. Evgeniou, C. A. Micchelli, M. Pontil, and J. Shawe-Taylor. Learning multiple tasks with
kernel methods. Journal of Machine Learning Research, 6:615–637, 2005.

J. Fan, F. Han, and H. Liu. Challenges of big data analysis. National science review, 1(2):
293–314, 2014.

C. Gentile, S. Li, and G. Zappella. Online clustering of bandits. In International Conference
on Machine Learning, pages 757–765. PMLR, 2014.

C. Gentile, S. Li, P. Kar, A. Karatzoglou, G. Zappella, and E. Etrue. On context-dependent
clustering of bandits. In International Conference on machine learning, pages 1253–1262.
PMLR, 2017.

A. Goldenshluger and A. Zeevi. A linear response bandit problem. Stochastic Systems, 3
(1):230–261, 2013.

J. Gu and S. Chen. Weighted distributed estimation under heterogeneity. arXiv preprint
arXiv:2209.06482, 2022.

Z. Guo. Inference for high-dimensional maximin effects in heterogeneous regression models
using a sampling approach. arXiv preprint arXiv:2011.07568, 2020.

Y. Han, Z. Zhou, Z. Zhou, J. Blanchet, P. Glynn, and Y. Ye. Sequential batch learning in
finite-action linear contextual bandits. ArXiv, 2020.

B. Hao, T. Lattimore, C. Szepesvári, and M. Wang. Online sparse reinforcement learning. In
International Conference on Artificial Intelligence and Statistics, pages 316–324. PMLR,
2021.

M. Hu, X. Shi, and P. X.-K. Song. Collaborative causal inference with a distributed data-
sharing management. arXiv preprint arXiv:2204.00857, 2022.

G.-S. Kim and M. C. Paik. Doubly-robust lasso bandit. Advances in Neural Information
Processing Systems, 32, 2019.

33



P. Kline, W. Johnson, L. Ingraham, E. D. Heggestad, J. L. Huang, B. K. Gorman, B. Bray,
P. J. Cawley, B. S. Connelly, K. S. Cortina, et al. Socioeconomic status and academic
achievement: A meta-analytic review of research. Review of Educational Research, 89
(3):420–460, 2019.

S. Kotsiantis, D. Kanellopoulos, P. Pintelas, et al. Handling imbalanced datasets: A review.
GESTS international transactions on computer science and engineering, 30(1):25–36,
2006.

B. Kveton, M. Konobeev, M. Zaheer, C.-w. Hsu, M. Mladenov, C. Boutilier, and C. Szepes-
vari. Meta-thompson sampling. In International Conference on Machine Learning, pages
5884–5893. PMLR, 2021.

A. Lazaric, E. Brunskill, et al. Sequential transfer in multi-armed bandit with finite set of
models. Advances in Neural Information Processing Systems, 26, 2013.

E. L. Lehmann and G. Casella. Theory of point estimation. Springer-Verlag, 1998.
S. Li, T. T. Cai, and H. Li. Transfer learning for high-dimensional linear regression:

Prediction, estimation, and minimax optimality. arXiv preprint arXiv:2006.10593, 2020.
S. Li, L. Zhang, T. T. Cai, and H. Li. Estimation and inference for high-dimensional

generalized linear models with knowledge transfer. Journal of the American Statistical
Association, pages 1–12, 2023.

K. Lounici, M. Pontil, A. B. Tsybakov, and S. Van De Geer. Taking advantage of sparsity
in multi-task learning. arXiv preprint arXiv:0903.1468, 2009.

C. Luo, R. Duan, A. C. Naj, H. R. Kranzler, J. Bian, and Y. Chen. Odach: a one-shot
distributed algorithm for cox model with heterogeneous multi-center data. Scientific
reports, 12(1):6627, 2022a.

Y. Luo, W. W. Sun, and Y. Liu. Contextual dynamic pricing with unknown noise: Explore-
then-ucb strategy and improved regrets. In Advances in Neural Information Processing
Systems, volume 35, pages 37445–37457, 2022b.

J. Marron. Big data in context and robustness against heterogeneity. Econometrics and
Statistics, 2:73–80, 2017.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

N. Meinshausen and P. Bühlmann. Maximin effects in inhomogeneous large-scale data.
The Annals of Statistics, 43(4):1801–1830, 2015.

OECD. Teaching for the future: Effective classroom practices to transform education.
OECD Publishing, 2019.

M.-h. Oh, G. Iyengar, and A. Zeevi. Sparsity-agnostic lasso bandit. In International
Conference on Machine Learning, pages 8271–8280. PMLR, 2021.

V. Perchet and P. Rigollet. The multi-armed bandit problem with covariates. THE AN-
NALS of STATISTICS, 41:693–721, 2013.

J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence. Dataset shift
in machine learning. Mit Press, 2008.

G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation for high-
dimensional linear regression over ℓq -balls. IEEE Transactions on Information Theory,
57(10):6976–6994, 2011. doi: 10.1109/TIT.2011.2165799.

Z. Ren and Z. Zhou. Dynamic batch learning in high-dimensional sparse linear contextual
bandits. Management Science, 2023.

34



J. Sarkar. One-armed bandit problems with covariates. The Annals of Statistics, pages
1978–2002, 1991.

C. Singh and A. Sharma. Online learning using multiple times weight updating. Applied
Artificial Intelligence, 34(6):515–536, 2020.

M. Soare, O. Alsharif, A. Lazaric, and J. Pineau. Multi-task linear bandits. In NIPS2014
workshop on transfer and multi-task learning: theory meets practice, 2014.

G. Stoet and D. C. Geary. The gender-equality paradox in science, technology, engineering,
and mathematics education. Psychological Science, 29(4):581–593, 2018.

Y. Tian and Y. Feng. Transfer learning under high-dimensional generalized linear models.
Journal of the American Statistical Association, 0:1–14, 2022.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

N. Tripuraneni, C. Jin, and M. Jordan. Provable meta-learning of linear representations.
In International Conference on Machine Learning, pages 10434–10443. PMLR, 2021.

A. B. Tsybakov. Introduction to nonparametric estimation. In Springer Series in Statistics,
2008.

M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini. Finite-time analysis of
kernelised contextual bandits. In Uncertainty in Artificial Intelligence, 2013.

E. Van Herpen, E. Van Nierop, and L. Sloot. The relationship between in-store marketing
and observed sales for organic versus fair trade products. Marketing Letters, 23:293–308,
2012.

B. Wang, Y. Fang, H. Lian, and H. Liang. Additive partially linear models for massive
heterogeneous data. Electronic Journal of Statistics, 13(1):391–431, 2019.

M. Woodroofe. A one-armed bandit problem with a concomitant variable. Journal of the
American Statistical Association, 74(368):799–806, 1979.

K. Xu and H. Bastani. Learning across bandits in high dimension via robust statistics.
arXiv preprint arXiv:2112.14233, 2021.

K. Xu, X. Zhao, H. Bastani, and O. Bastani. Group-sparse matrix factorization for transfer
learning of word embeddings. In International Conference on Machine Learning, pages
11603–11612. PMLR, 2021.

F. Yang, H. R. Zhang, S. Wu, W. J. Su, and C. Ré. Analysis of information transfer
from heterogeneous sources via precise high-dimensional asymptotics. arXiv preprint
arXiv:2010.11750, 2020.

X. Yang, X. Yan, and J. Huang. High-dimensional integrative analysis with homogeneity
and sparsity recovery. Journal of Multivariate Analysis, 174:104529, 2019.

Y. Yang and D. Zhu. Randomized allocation with nonparametric estimation for a multi-
armed bandit problem with covariates. The Annals of Statistics, 30(1):100–121, 2002.

K. Yuan, S. A. Alghunaim, and X. Huang. Removing data heterogeneity influence en-
hances network topology dependence of decentralized sgd. Journal of Machine Learning
Research, 24(280):1–53, 2023.

X. Zhang and W. Wang. Optimal model averaging estimation for partially linear models.
Statistica Sinica, 29(2):693–718, 2019.

T. Zhao, G. Cheng, and H. Liu. A partially linear framework for massive heterogeneous
data. Annals of statistics, 44(4):1400, 2016.

35



Supplementary Material to “Optimal Multitask
Linear Regression and Contextual Bandits

under Sparse Heterogeneity”

A More Related Works & Notations
Multitask Learning. When the data has components corresponding to multiple domains
(also referred to as tasks or sources), multitask learning aims to develop methods that borrow
information across tasks (Caruana, 1998). Multitask learning can be beneficial when the
task-associated parameters are close in some sense, e.g., in the ℓ2 norm, or follow a common
prior distribution (Raina et al., 2006; Hanneke and Kpotufe, 2022). Popular multitask
methods include regularizing the parameters to be estimated towards a common parameter—
through ridge (Evgeniou and Pontil, 2004; Hanzely et al., 2020), ℓ2 (Duan and Wang, 2022),
kernel ridge (Evgeniou et al., 2005) penalties, etc—and clusteringpooling datasets based
on similarity metrics (Ben-David et al., 2010; Crammer et al., 2008; Dobriban and Sheng,
2021). One can further leverage certain shared structures to improve rates of estimation.
Tripuraneni et al. (2021); Du et al. (2020); Collins et al. (2021) study a low dimensional
shared representation of task-specific models. Lounici et al. (2009); Singh and Sharma (2020)
consider the parameters for each task to be sparse and share the same support. Bastani
(2021); Xu and Bastani (2021); Huang et al. (2022) motivate and study sparse heterogeneity.

Robust Statistics & Learning. In robust statistics and learning (Huber, 1981; Ham-
pel et al., 2011) many methods have been developed that are resilient to unknown data
corruption (Rousseeuw, 1991; Minsker, 2013). From the optimization perspective, methods
to robustly aggregate gradients of the loss functions have been developed (Su and Vaidya,
2016; Blanchard et al., 2017; Yin et al., 2018). Our setting is different and requires a novel
analysis.

Notations. We use := or ≜ to introduce definitions. For an integer d ≥ 1, we write [d] for
both {1, . . . , d} and {e1, . . . , ed} ⊆ Rd, where ek is the k-th canonical basis vector of Rd. We
use Id to denote the d×d identity matrix. We let Bd denote the unit Euclidean ball centered
at the origin in Rd. For a vector v ∈ Rd, we denote its entries as v1, . . . , vd. We also denote
∥v∥p = (

∑
k∈[d] |vk|p)1/p for all p > 0, with ∥v∥0 defined as the number of non-zero covariates.

For any I ⊆ [M ], given weights {wm}Mm=1 (or sample sizes {nm}Mm=1), we denote WI as∑
m∈I wm and write nI for

∑
m∈I nm. We also write [v]I and vI as the sub-vector of v with

entries in I For a matrix A ∈ Rm×n, we denote the (i, j)-th covariate of A by [A]i,j or Ai,j,
and the i-th row (resp., the j-the column) by Ai,· (resp., A·,j). For two real numbers a and b,
we write a∨ b and a∧ b for max{a, b} and min{a, b}, respectively. For σ2 > 0, we denote by
subG(σ2) the class of σ2-sub-Gaussian random variables. For an event E, we write 1(E) for
the indicator of the event; so 1(E)(x) = 1 if x ∈ E and 1(E)(x) = 0 otherwise. We use the
Bachmann-Landau asymptotic notations Ω(·), Θ(·), O(·) to absorb constant factors, and use
Ω̃(·), Õ(·) to also absorb logarithmic factors in various problem parameters specified in each
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case. Furthermore, we use probabilistic notations such as OP (a{nm}Mm=1
) to denote quantities

that are bounded by a{nm}Mm=1
with overwhelming probabilities as minm∈[M ] nm →∞. For a

number x ∈ R, we use (x)+ to denote its non-negative part, i.e., x1(x ≥ 0).
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B Technical Lemmas
Lemma B.1 (Tail integral formula for expectation). For any non-negative, con-
tinuous random variable Z with E[Z] <∞ and any q ≥ 0, it holds that

E[Z1(Z ≥ q)] = qP(Z ≥ q) +

∫ ∞

q

P(Z ≥ t)dt.

Proof. The result is well known (e.g., Exercise 1.2.3 in Vershynin, 2018).

Lemma B.2 (Maximal Inequalites). For σ2 > 0 and for 1 ≤ m ≤ M , let Xm ∼
subG(σ2), not necessarily independent, for all 1 ≤ m ≤M . Then, it holds that

1. E[max1≤m≤M Xm] ≤ σ
√

2 ln(M);

2. E[max1≤m≤M |Xm|] ≤ σ
√
2 ln(2M);

3. For any t ≥ 0, P (max1≤m≤M Xm ≥ t) ≤M exp(−t2/(2σ2)).

Proof. The result is well known (e.g., Koltchinskii and Panchenko, 2002).

Lemma B.3 (Bernstein’s inequality; Uspensky (1937)). Let Z1, . . . , Zn be i.i.d. ran-
dom variable with |Z1 − E[Z1]| ≤ b and Var(Z1) = σ2 > 0, and let Z̄ = 1

n

∑n
i=1 Zi. Then for

any δ ≥ 0,

max{P(Z̄ − E[Z̄] > δ),P(Z̄ − E[Z̄] < −δ)} ≤ exp

(
− nδ2

2(σ2 + bδ)

)
. (B.1)

Lemma B.4 (Properties of Orlicz norm (Smithies, 1962)). For any α ∈ (0, 2], the
following properties hold when ∥Z∥Ψα exists.

1. Normalization: E[Ψα(|Z|/∥Z∥Ψα)] ≤ 1.

2. Homogeneity: ∥cZ∥Ψα = c∥Z∥Ψα for any c ∈ R.

3. Deviation inequality: P(|Z| ≥ t) ≤ 2 exp(−(t/∥Z∥Ψα)
α).

Lemma B.5 (Berry-Esseen theorem (Shevtsova, 2010)). Given independent random
variables {Zt}ni=1 with E[Zi] = 0, E[Zi] = σ2

i ≥ 0, and E[|Zi|3] = ρi < ∞, let Sn =∑n
i=1 Zi/

√∑n
i=1 σ

2
i be the normalized sum, and denote Fn the c.d.f. of Sn, and Φ the c.d.f. of

the standard normal distribution. It holds that

sup
z∈R
|Fn(z)− Φ(z)| ≤ 0.6

n∑
t=1

ρt/

(
n∑

t=1

σ2
t

)3/2

.

Lemma B.6 (Generalized Hanson-Wright inequality (Götze et al., 2021; Sam-
bale, 2020)). For any α ∈ (0, 2], let Z1, . . . , Zn be i.i.d. zero-mean random variables with

3



∥Z1∥Ψα ≤ σ and A = (ai,j) be a symmetric matrix. Then there is an absolute constant chw
such that for any t ≥ 0,

P

∣∣∣∣∣∣
∑
i,j∈[n]

ai,jZiZj −
∑
i∈[n]

ai,iVar(Z1)

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
− 1

chw
min

{
t2

σ4∥A∥2F
,

(
t

σ2∥A∥2op

)α/2
})

where ∥ · ∥F and ∥ · ∥op indicates the Frobenius norm and the operator norm, respectively. In
particular, when A = vv⊤ with v = (v1, . . . , vn)

⊤ ∈ Rn, it holds for any t ≥ σ2∥v∥22 that

P

∣∣∣∣∣∣
∑

i∈[n]

viZi

2

− ∥v∥22Var(Z1)

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
− 1

chw

(
t

σ2∥v∥22

)α/2
)
.

Lemma B.7 (Joint convexity of the KL-divergence (Cover and Thomas, 1991)).
The Kullback-Leibler divergence DKL(P ∥Q) is jointly convex in its arguments P and Q: let
P1, P2, Q1, Q2 be distributions on a common set X , then for any λ ∈ [0, 1], it holds that

DKL(λP1 + (1− λ)P2 ∥λQ1 + (1− λ)Q2) ≤ λDKL(P1 ∥Q1) + (1− λ)DKL(P2 ∥Q2).

More generally, if the parameter θ follows some prior R and if conditioned on the parameter
θ, the random variables X ∼ Pθ and Y ∼ Qθ, then

DKL(Pθ ◦R ∥Qθ ◦R) ≤ Eθ∼R[DKL(Pθ ∥Qθ)],

Lemma B.8 (Lemma 8 of Han et al. (2020)). Suppose that for d ≥ 2, Z ∈ Rd is uniformly
distributed on the source (d− 1)-dimensional sphere, then the absolute moments of the first
coordinate [Z]1 of Z are, for k > −1

E[|[Z]1|k] =
Γ(d

2
)Γ(k+1

2
)

Γ(d+k
2
)Γ(1

2
)

where Γ(·) is the gamma function.

Definition B.1 (Maximum expectation over small probability sets). Given a
probability space A = (Ω,P,F), a random variable Z over A, and δ ∈ [0, 1], define Eδ[Z] as
the maximum expectation of Z over all measurable sets with probability at most δ:

Eδ[Z] := sup
A∈F
{E[Z(ω)1(ω ∈ A)] : P(A) ≤ δ} . (B.2)

Lemma B.9 (Sub-Gaussian integral over small probability sets). For any Z ∼
subG(σ2) with σ2 > 0 and E[Z] = 0, the maximum expectation over small probability sets
from (B.2) of |Z| and Z2 is bounded as

Eδ[|Z|] = O
(
δσ ln(2/δ)1/2

)
(B.3)

and Eδ[Z2] = O (δσ2 ln(2/δ)). Moreover, if |Z| ≥ |Z̃| a.s., then Eδ[|Z̃|] ≤ Eδ[|Z|] for any
δ ∈ [0, 1].

4



Proof. We first consider a continuous random variable Z over a probability space A =
(Ω,P,F). Then, from (B.2), Eδ[|Z|] is given by the integral over

Aδ = {ω ∈ Ω : |Z(ω)| ≥ qδ} with P(|Z(ω)| ≥ qδ) = δ.

Since Z ∼ subG(σ2), by the Chernoff bound, we have δ = P(|Z(ω)| ≥ qδ) ≤ 2 exp
(
− q2δ

2σ2

)
,

which implies
qδ ≤

√
2 ln(2/δ)σ. (B.4)

Plugging (B.4) and the Chernoff bound into Lemma B.1, we find

E[|Z|1(|Z| ≥ qδ)] = qδP(|Z| ≥ qδ) +

∫ ∞

qδ

P(|Z| ≥ t)dt

≤ δqδ +

∫ ∞

qδ

min

{
δ, 2 exp

(
− t2

2σ2

)}
dt (B.5)

where the last inequality follows from the Chernoff bound and from P(|Z| ≥ t) ≤ P(|Z| ≥
qδ) = δ. Now,∫ ∞

qδ

min

{
δ, 2 exp

(
− t2

2σ2

)}
dt = δ

(√
2 ln(2/δ)σ − qδ

)
+ 2

∫ ∞

√
2 ln(2/δ)σ

exp

(
− t2

2σ2

)
dt

= δ
(√

2 ln(2/δ)σ − qδ
)
+ 2
√
2πσ · P

(
N (0, σ) ≥

√
2 ln(2/δ)σ

)
. (B.6)

Using (Vershynin, 2018, Proposition 2.1.2), we have

P
(
N (0, σ2) ≥

√
2 ln(2/δ)σ

)
= P

(
N (0, 1) ≥

√
2 ln(2/δ)

)
≤ 1√

2π
√

2 ln(2/δ)
exp (− ln(2/δ)) =

δ

4
√
π ln(2/δ)

. (B.7)

Combining (B.7) with (B.6) and (B.5), we find (B.3). For random variables Z that are not
necessarily continuous, let Zε :=

√
1− εZ+

√
εZ ′ with independent Gaussian Z ′ ∼ N (0, σ2)

and 0 ≤ ε ≤ 1. Clearly, Zε ∼ subG(σ2) and is continuous. By the result of the continuous
case, we have

δσ
(
[2 ln(2/δ)]1/2 + [2 ln(2/δ)]−1/2

)
≥ Eδ[|Zε|] ≥

√
1− εEδ[|Z|]−

√
εEδ[|Z ′|]. (B.8)

Letting ε → 0 in the right-hand side of (B.8), (B.3) follows for general Z. The result for
Eδ[Z2] follows similarly.

Lemma B.10. Given η ∈ (0, 1], rk ≥ 0 for all k ∈ [d], a ≥ 0, and for p ∈ {1, 2}, consider
the functions fq : {x ∈ Rd : 0 ≤ xk ≤ 1, ∀ k ∈ [d] and

∑
k∈[d] xk ≤ s} → R, fp(x1, . . . , xd) :=∑

k∈[d](xk ∧ a)p1{xk < η}) + ap1{xk ≥ η}. Then it holds that

max
x1,...,xd

fp(x1 . . . , xd) ≤ ap
(⌈

s

a ∧ η

⌉
∧ d
)
.
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Proof. We only prove the result for f1, and the result for function f2 follows similarly.
Without loss of generality, we assume 1 ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ 0 and ⌈s/(a ∧ η)⌉ < d since
fp(x1 . . . , xd) ≤ dap is clear. In this case, we claim that the maximum can be attained at
x1 = · · · = x⌊s/(a∧η)⌋ = a∧η, x⌊s/(a∧η)⌋+1 = s−η⌊s/(a∧η)⌋, and xk = 0 for all k > ⌊s/η⌋+1.
Further, the maximum is upper bounded by ap (⌈s/(a ∧ η)⌉ ∧ d). We now use the exchange
argument to prove the claim.

S. 1 If there is some k such that xk > a∧ η ≥ xk+1, then defining x′ by letting (x′k, x
′
k+1) =

((a ∧ η), xk + xk+1 − (a ∧ η)) while for other j, x′j = xj, does not decrease the value of
f1. Therefore, the maximum is attained by x such that for some j, x1 = · · · = xj =
(a ∧ η) > xj+1 ≥ · · · ≥ xd.

S. 2 If there is some k such that (a ∧ η) > xk ≥ xk+1 > 0, then defining x′ by letting
(x′k, x

′
k+1) = (min{(a ∧ η), xk + xk+1},max{0, xk + xk+1 − (a ∧ η)}) while for other

j, x′j = xj, does not decrease the value of f1. Therefore, combined with Step 1, the
maximum is attained by x such that for some j, x1 = · · · = xj = a∧ η > xj+1 ≥ 0 and
xk = 0 for all k > j + 1. Thus at most one element lies in (0, η).

Combining S. 1 and S. 2 above, we complete the proof of the claim, which further leads to
the conclusion.
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C Results on Linear Regression with Gaussian Noise

C.1 Lemma C.2 and its Proof

Lemma C.2 characterizes the estimation error of the median of Gaussian inputs. This is
similar to classical results from robust statistics (see, e.g., Lerasle and Oliveira, 2011), but
existing results typically assume that the “inlier data” is an i.i.d. sample. In contrast, we
only require independence, since we wish to apply it to the non-i.i.d. variables {β̂(m)

ind }Mm=1.

Lemma C.1. Given independent Gaussian random variables {Zi ∼ N (µ, σ2
i )}i∈I with a

shared mean but with possibly different variances, and non-negative weights {wi}i∈I with
WI ≜

∑
i∈I wi, then 1/2 + α- weighted population quantile µ1/2+α is defined such that∑

i∈I

wiΦ

(
µ1/2+α − µ

σi

)
=

(
1

2
+ α

)
WI . (C.1)

Then it holds for any |α| < 1/2 that

|µ1/2+α − µ| ≤ Cαασ̄I

where σ̄I =
∑

i∈I wiσi/WI, Cα ≜ max0<ϵ<1/2−α

{
ϕ(Φ−1(1− ϵ))(1− 2α

1−2ϵ
)
}−1, and ϕ, Φ are

the density and c.d.f. of the standard normal distribution, respectively.

Proof. We only prove the case where α ≥ 0 and the other case follows by symmetry. We
denote the normalized weight wi/WI as w̄i. Clearly, µ1/2+α ≥ µ for α ≥ 0, so we can divide
I into to two groups based on weighted probabilities:

Ismall := {i ∈ I : Φ((µ1/2+α − µ)/σi) ≤ 1− ϵ}, Ilarge := I\Ismall,

where 0 < ϵ < 1/2− α is a real number to be chosen later. Using the mean-value theorem,
for all 0 ≤ z ≤ Φ−1(1− ϵ), there exists ξ ∈ (0, z) such that

Φ(z) =
1

2
+ zϕ(ξ) ≥ 1

2
+ zϕ(Φ−1(1− ϵ)).

where ϕ is the density of the standard normal distribution. We thus have

1

2
+ α ≥

∑
i∈Ismall

w̄i

(
1

2
+ ϕ(Φ−1(1− ϵ))σ−1

i (µ1/2+α − µ)
)
+
∑

i∈Ilarge

w̄i(1− ϵ), (C.2)

leading to

µ1/2+α ≤µ+ α/

(
ϕ(Φ−1(1− ϵ))

∑
i∈Ismall

w̄i/σi

)
. (C.3)

On the other hand, we have from (C.2) that∑
i∈Ilarge

wi ≤
α

1/2− ϵ
,
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which implies ∑
i∈Ismall

wi ≥ 1− α

1/2− ϵ
.

Consequently, using Hölder’s inequality, we obtain

∑
i∈Ismall

w̄i/σi
∑

i∈Ismall

w̄iσi ≥

( ∑
i∈Ismall

w̄i

)2

≥
(
1− α

1/2− ϵ

)2

. (C.4)

Combing (C.3) and (C.4), we obtain

µ1/2+α ≤ µ+ Cα

∑
i∈Ismall

w̄iσi,

where Cα is defined in the statement.

Lemma C.2. Given independent Gaussian random variables {Zm ∼ N (µm, σ
2
m)}Mm=1, any

positive weights {wm}Mm=1, and some µ ∈ R, let B ≜ {m ∈ [M ] : µm ̸= µ} and G ≜ [M ]\B.
If |B| < M , for any δ ≥ 0 such that

αB,δ ≜
∑
m∈B

wm/W[M ] +

√
1.01δ

∑
m∈G

w2
m/WG <

1

2
, (C.5)

it holds with probability at least 1− 2e−2δ that

|WMed({Zm}m∈[M ]; {wm}m∈[M ])− µ| ≤ CαB,δ
αB,δσ̄G,

where σ̄G ≜
∑

m∈G wmσm/WG and Cα is the constant depending only on α defined in Lemma
C.1.

Proof. Denote Bc as G for notational simplicity. For all z ∈ R, let F̂G(z) :=
∑

m∈G wm1(Zn ≤
z)/WG and F̂[M ](z) :=

∑
m∈[M ]wm1(Zm ≤ z)/W[M ] be the weighted empirical distributions

of {Zm}m∈G and {Zm}Mm=1, respectively. Then we have

E[F̂G(z)] =
∑
m∈G

wm1(Zm ≤ z)/WG =
∑
m∈G

wmΦ

(
z − µ
σm

)
/WG.

By the condition (C.5) on αB,δ, there are unique values zhigh and zlow such that∑
m∈G

wmΦ

(
zhigh − µ
σm

)
=

(
1

2
+ αB,δ

)
WG,

∑
m∈G

wmΦ

(
zlow − µ
σm

)
=

(
1

2
− αB,δ

)
WG.

By Hoeffding’s inequality, for any given δ ≥ 0 and z ∈ R, we have with probability at least
1− e−2δ that

F̂G(z)−W−1
G

∑
m∈G

wmΦ

(
z − µ
σm

)
≤
√
δ
∑
m∈G

w2
m/WG.
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It is not hard to verify that for all z ∈ R,∣∣∣F̂G(z)− F̂[M ](z)
∣∣∣ ≤ WB

W[M ]

. (C.6)

We thus have

F̂[M ](zhigh) ≥F̂G(zhigh)−
WB

W[M ]

≥W−1
G

∑
m∈G

wmΦ

(
z − µ
σm

)
− WB

W[M ]

−
√
δ
∑
m∈G

w2
m/WG >

1

2
.

Similarly, we have F̂[M ](zlow) < 1/2. Further using Lemma C.1 leads to the conclusion.

C.2 Lemma C.3 and its Proof

Lemma C.3. Under Conditions 2 and 3, for any 0 < η ≤ 1
5

and k ∈ Iη, it holds for any
0 ≤ δ ≤ W[M ]/(21maxm∈[M ]wm) that

P
(
|β̂⋆

k − β⋆
k| ≥ 1.25C0.45αBk,δσ̄[M ],k | {X(m)}Mm=1

)
≤ 2e−2δ,

where σ̄[M ],k =
∑

m∈[M ]wmσm
√

[(X(m)⊤X(m))−1]k,k/W[M ] and αBk,δ follows from the defini-
tion in (C.5).

Proof. Since WBk
≤ ηW[M ] for any k ∈ Iη and η ≤ 1

5
, we have for each k ∈ Iη and any

0 ≤ δ ≤ 1/(25
∑

m∈Gk
w̄2

m) that

αBk,δ =
WBk

W[M ]

+

√
1.01δ

∑
m∈Gk

w2
m/WGk

≤ WBk

W[M ]

+
√

1.01δ max
m∈[M ]

wm/W
1/2
Gk

≤WBk

W[M ]

+
√

1.01δ max
m∈[M ]

wm/(0.5W[M ])
1/2 ≤ 1

5
+

1

4
= 0.45.

Therefore, the condition (C.5) from Lemma C.2 is satisfied with α = 0.45. Thus, by Lemma
C.2, we have for any 0 ≤ δ ≤ W[M ]/(21maxm∈[M ]wm) that

P
(
|β̂⋆

k − β⋆
k| ≥ C0.45ᾱBk,δσGk

| {X(m)}Mm=1

)
≤ 2e−2δ. (C.7)

Furthermore, using WGk
≥ 4W[M ]/5, we have

σ̄Gk
=
∑
m∈Gk

wmσm/WGk
≤ 5

∑
m∈Gk

wmσm/(4W[M ]) = 1.25σ̄[M ],k. (C.8)

Combining (C.7) with (C.8) completes the proof.

9



C.3 Proof of Proposition 1

Proof. For simplicity, we only prove the case n1 ≥ · · · ≥ nM and σ1 = · · · = σM = σ for
some σ > 0, and thus wm = nm/σ

2 for all m ∈ [M ]. The case of heterogeneous variances
follows by considering the rescaled sample size ñm = nmσ

2/σ2
m for each m ∈ [M ].

For each k ∈ [d], let σ̄k ≜
∑

m∈[M ]wm

√
v
(m)
k σ/W[M ] where v(m)

k =
√

[(X(m)⊤X(m))−1]k,k.
Due to Condition 4, we have

W[M ]/(21 max
m∈[M ]

wm) ≥ n[M ]/(21n1) ≥ (21 ln((n[M]/nM) ∧ (d/s))/cs)
2,

where the last inequality follows from Condition 4 and the choice of {wm}Mm=1 and cs is
defined in Condition 4.

Taking δ ≜ (21 ln(n[M ]/nM ∧ (d/s))/cs)
2 in Lemma C.3, we have

P
(
|β̂⋆

k − β⋆
k| ≥ 1.25C0.45αBk,δσ̄k | {X(m)}Mm=1

)
≤ 2e−2(21 ln(n[M ]/nM∧(d/s))/cs)2 = O

(
nM

n[M ]

∨ s

d

)
.

(C.9)
On the other hand, by using a standard ϵ-net argument (see e.g., Vershynin (2018)), one

can show that the event

E ≜ {X(m)⊤X(m) ≳ µnmId/2, ∀m ∈ [M ]}

holds with probability at least 1− O(Mde−cnM ) where c is a constant only depending on µ

and L. Since event E implies
√
v
(m)
k = O(1/

√
nm) and thus

σ̄k = O

 ∑
m∈[M ]

√
nm/σm/

∑
m∈[M ]

nm/σ
2
m

 ,

combining with (C.9), we complete the proof.

C.4 Proof of Theorem 1

We provide the proof for p = 1 and Option I under identical variances, i.e., σ1 = · · · =
σM = σ; the case p = 2, Option II, or heterogeneous noise variances follows similarly. Let
I(m) := {k ∈ [d] : β

(m)
k = β⋆

k} and recall Iη from (2). For all m ∈ [M ], we provide a series of
bounds for |β̂(m)

MOLAR,k−β
(m)
k | for each k ∈ [d] in three cases. We denote β̂(m)

MOLAR as β̂(m) below
for simplicity. First noting that v(m)

k = O(t/
√
nm) with probability at least 1− de−cnmt2 for

some constant c (see, e.g., Vershynin (2018)), we have v(m)
k = OP (ln(d)/

√
nm),∀m ∈ [M ].

Case 1. For any k ∈ [d], we guarantee that

E[|β̂(m)
k − β(m)

k | | {X
(m)}Mm=1] = ÕP (σ/

√
nm). (C.10)
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By definition, for any m ∈ [M ] and k ∈ [d], β̂(m)
k is either equal to β̂(m)

ind,k or β̂⋆
k , and the latter

happens only when |β̂⋆
k − β̂

(m)
ind,k| ≤ γm

√
v
(m)
k . In the latter case, we have

|β̂(m)
k − β(m)

k | = |β̂
⋆
k − β

(m)
k | ≤ |β̂

(m)
k − β(m)

k |+ |β̂
(m)
ind,k − β̂

⋆
k| ≤ |β̂

(m)
k − β(m)

k |+ γm

√
v
(m)
k .

Therefore, in both cases,

|β̂(m)
k − β(m)

k | ≤ |β̂
(m)
ind,k − β

(m)
k |+ γm

√
v
(m)
k . (C.11)

By (1), β̂(m)
ind,k − β

(m)
k | v(m)

k ∼ N (0, σ2v
(m)
k ), we have E[|β̂(m)

ind,k − β
(m)
k | | v

(m)
k ] = O(σv

(m)
k ) =

ÕP (σ/
√
nm).

Case 2. When k ∈ I(m) ∩ Iη, we can obtain the improved bound

E[|β̂(m)
k − β(m)

k | | {X
(m)}Mm=1] = ÕP

(
WBk

σ

W[M ]
√
n1

+
σ

√
n[M ]

+
sσ/d
√
nm

)
. (C.12)

Let δ = (21 ln(n[M ]/nM ∧ (d/s))/cs)2 and σ̄k =
∑

m∈[M ]wm

√
v
(m)
k σ/W[M ] as stated in Section

C.3. Without loss of generality, we consider 1.25C0.45αBk,δσ̄k ≤ σ

√
v
(m)
k , otherwise (C.12) is

implied by (C.10). Define the event Ek = {|β̂⋆
k − β⋆

k| ≤ 1.25C0.45αBk,δσ̄k}. By Lemma C.3,
we have P((Ek)c) ≤ O((nM/n[M ])∧ (s/d)). Furthermore, by the condition 1.25C0.45αBk,δσ̄k ≤

σ

√
v
(m)
k , we have that the event Ek implies |β̂⋆

k − β⋆
k| ≤ 1.25C0.45αBk,δσ̄k. On the event Ek, if

β̂
(m)
k ̸= β̂⋆

k , i.e., |β̂⋆
k − β̂

(m)
ind,k| > γm

√
v
(m)
k , then, for k ∈ I(m) ∩ Iη,

|β̂(m)
ind,k − β

(m)
k | = |β̂

(m)
ind,k − β

⋆
k| ≥|β̂

(m)
ind,k − β̂

⋆
k| − |β̂⋆

k − β⋆
k| > γmσ

√
v
(m)
k − 1.25C0.45αBk,δσ̄k

≥(γm − σ)
√
v
(m)
k .

Let ζ(m)
k ≜ (γm − σ)

√
v
(m)
k and

F (m)
k ≜

{
|β̂(m)

ind,k − β
(m)
k | ≤ ζ

(m)
k σ

√
v
(m)
k

}
.

The event F (m)
k ∩ Ek implies that β̂(m)

k = β̂⋆
k for k ∈ Iη ∩ I(m). Since β̂(m)

ind,k − β
(m)
k | v(m)

k ∼
subG(v(m)

k σ2), we have P((F (m)
k )c | v(m)

k ) ≤ O((nM/n[M ]) ∧ (s/d)). Thus, with probability at
least P(Ek ∩ F (m)

k ) ≥ 1−O((nM/n[M ]) ∧ (s/d)), it holds that

|β̂(m)
k − β(m)

k | = |β̂
⋆
k − β

(m)
k | ≤ 1.25C0.45αBk,δσ̄k.

Furthermore, using (C.11) and Lemma B.9 and recalling Definition B.1, we have that for
any k ∈ Iη ∩ I(m),

E[|β̂(m)
k − β(m)

k | | {X
(m)}Mm=1] ≤ Õ (αBk,δσ̄k) + EO((nm/n[M ])∨(s/d))

[
|β̂(m)

ind,k − β
(m)
k |+ γm

√
v
(m)
k

]
= Õ (αBk,δσ̄k) + Õ

(
(nM/n[M ]) ∨ (s/d))σ

√
v
(m)
k

)
. (C.13)
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Now,

σ̄k ≜
∑

m∈[M ]

wm

√
v
(m)
k σ/W[M ] = ÕP

 ∑
m∈[M ]

√
nmσ/n[M ]

 a

≤ ÕP (σ/
√
n1) (C.14)

and √∑
m∈[M ]w

2
m

WM

σ̄k ≤
√
n1√
n[M ]

ÕP

 ∑
m∈[M ]

√
nmσ/n[M ]

 b

≤ ÕP (σ/n[M ]), (C.15)

where inequalities a and b are due to Condition 4. Thus, (C.14) and (C.15) lead to

αBk,δσ̄k = OP

(
WBk

σ

W[M ]
√
n1

+
σ

√
n[M ]

)
. (C.16)

Combining (C.13) and (C.16), we reach (C.12).

Bounding the summed error. Combining the cases (C.10) and (C.12), we obtain

E[∥β̂(m) − β(m)∥1 | {X(m)}Mm=1]

=
∑

k∈Iη∩I(m)

E[|β̂(m)
k − β(m)

k | | {X
(m)}Mm=1] +

∑
k/∈I(m)∩Iη

E[|β̂(m)
k − β(m)

k | | {X
(m)}Mm=1]

≤
∑

k∈Iη∩I(m)

ÕP

(
WBk

σ

W[M ]
√
n1

+
σ

√
n[M ]

+
sσ/d
√
nm

)
+

∑
k/∈I(m)∩Iη

Õ

(
σ
√
nm

)

≤
∑
k∈Iη

ÕP

(
WBk

σ

W[M ]
√
nm

)
+
∑
k/∈Iη

ÕP

(
σ
√
nm

)
+ ÕP

(
sσ
√
nm

+
dσ
√
n[M ]

)
. (C.17)

where the last inequality is due to |(I(m))c| ≤ s and n1 ≥ nm for any m ∈ [M ]. Using Lemma
B.10 with a = 1 and xk = WBk

/W[M ] for all k ∈ [d], we have∑
k∈[d]

(
WBk

W[M ]

1(WBk
/W[M ] < η) + 1(WBk

/W[M ] ≥ η)

)
≤ ⌈s/η⌉. (C.18)

Plugging η = 1/5 = O(1) into (C.18) and combining (C.17), we have

E[∥β̂(m) − β(m)∥1 | {X(m)}Mm=1] = ÕP

(
sσ
√
nm

+
dσ
√
n[M ]

)
.

Using Chebyshev’s inequality, we obtain

∥β̂(m) − β(m)∥1 = ÕP

(
sσ
√
nm

+
dσ
√
n[M ]

)
.

Similarly for p = 2, we can establish

E[∥β̂(m) − β(m)∥22 | {X(m)}Mm=1] = ÕP

(
sσ2

nm

+
dσ2

n[M ]

)
.
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C.5 Proof of Theorem 2

Proof. As discussed in Section 2.3, we prove Theorem 2 by considering two special cases of
our sparse heterogeneity model:

1. The homogeneous case where β1 = · · · = βM = β⋆ ∈ Rd.

2. The s-sparse case where β⋆ = 0 and ∥βm∥0 ≤ s for all m ∈ [M ].

Therefore, clearly
M≥ inf

β̂(m)

sup
β⋆∈Rd, {β(m)}Mm=1⊆Bs(β⋆)

{Σ(m)}Mm=1⊆Aµ,L

∥β̂⋆ − β⋆∥pp ≜ A (C.19)

and
M≥ inf

β̂(m)

sup
β⋆∈Rd, {β(m)}Mm=1⊆Bs(β⋆)

{Σ(m)}Mm=1⊆Aµ,L

∥β̂(m) − β(m)∥pp ≜ B. (C.20)

We will show that A = Ω̃P (d/(
∑M

m=1 nm/σ
2
m)

p/2) and B = Ω̃P (sσ
p
m/(nm)

p/2). Then the
conclusion follows from the inequality A ∨B ≥ (A+B)/2 = Ω(A+B).

The case where p = 2: The proof follows the same idea as Example 8.4.5 of Duchi
(2019) and the argument in Duchi and Wainwright (2013). These show a lower bound
Ω(dσ2/∥X⊤X∥op) for linear regression with a given covariate matrix X and i.i.d. N (0, σ2)
noises. Here, we sketch the key ideas for the extension to different noise variances.

Let V be a packing of {−1, 1}d such that ∥v − v′∥ ≥ d/2 for distinct elements of V , and
|V| ≥ exp(d/8) as guaranteed by the Gilbert-Varshamov bound (Duchi, 2019, Example 7.5).
For fixed δ > 0, if we set β⋆

v = δv, then we have the packing guarantee for distinct elements
v, v′ that

∥β⋆
v − β⋆

v′∥1 = δ
d∑

k=1

|vk − v′k| ≥ δd/2.

Then we have an upper bound on the Kullback-Leibler divergence of the data distributions
associated with β⋆

v , β⋆
v′ , a feature vector x, and standard deviation σ:

DKL(N (x⊤β⋆
v , σ

2) ∥N (x⊤β⋆
v′ , σ

2)) =
1

2σ2
∥x⊤(β⋆

v − β⋆
v′)∥22.

Consequently, given the independent observations Yv ≜ {{x(m)⊤
i β⋆

v + ϵ
(m)
i }

nm
i=1}Mm=1 where

ϵ
(m)
i

i.i.d.∼ N (0, σ2
m) and Yv′ , the Kullback-Leibler divergence is

DKL(P (Yv | {X(m)}Mm=1) ∥P (Yv′ | {X(m)}Mm=1)) =
M∑

m=1

1

2σ2
m

∥X(m)(β⋆
v − β⋆

v′)∥22

≤
M∑

m=1

2dδ2

σ2
m

∥X(m)⊤X(m)∥op (C.21)
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where the last inequality holds because ∥v−v′∥22 ≤ 4d. Now we apply the local Fano method
(Duchi, 2019, Proposition 8.43), we obtain

A ≥ δd

4

(
1− I(V ;Y) + ln(2)

ln(|V|)

)
,

where I(V ;Y) is the mutual information between the index variable V ∼ Unif(V) and the

responses Y = {Y (m)}m∈[M ]. By choosing δ = 8−1
(∑M

m=1 ∥X⊤X∥op/σ2
m

)−1/2

, following
(Duchi, 2019, Example 7.5), we find that 1− (I(V ;Y) + ln(2))/ ln(|V|) ≥ 1/2. This leads to

A | {X(m)}Mm=1 = Ω(d
(∑M

m=1 ∥X⊤X∥op/σ2
m

)−1/2

). Finally, noting ∥X⊤X∥op = ÕP (nm), we

conclude A = Ω̃P (d/(
∑M

m=1 nm/σ
2
m)

p/2).
By applying the same argument to a single task with s-dimensional parameters, one can

readily show B = Ω̃P (sσ
p
m/(nm)

p/2).

The case where p = 1: The proof for the ℓ1 case follows the same workflow by utilizing
∥β⋆

v − β⋆
v′∥1 = δ

∑d
k=1 |vk − v′k| ≥ δd/2. We then obtain A = Ω(dσ2/(µ

∑
ℓ∈[M ] n

ℓ)1/2) and
thus B = Ω(sσ/(µnm)

1/2) accordingly.

D Results on Linear Regression with General Noise
Lemma C.2, the cornerstone of our previous analysis, relies on the Gaussianity of the noise
{ε(m)

i }
nm
i=1 for each m ∈ [M ]. In this section, we argue that the estimation error of β̂⋆ holds

up to a smaller-order term, even if we relax Gaussianity to bounded skewness and Orlicz
norm. While this holds for unbalanced datasets, for simplicity, we only state the results for
balanced datasets, i.e., nm = n and σm = σ for all m ∈ [M ]. Recall that for a random
variable Z, and for α ≥ 0, the α-order Orlicz norm of ε(m)

i , 1 ≤ i ≤ n, is

∥Z∥Ψα := inf {c > 0 : E [Ψα (|Z|/c)] ≤ 1} ,

where Ψα(u) = eu
α−1 for any u ≥ 0. We make the following technical assumption, replacing

Condition 2.

Condition D.1 (Bounded covariates, skewness, and Orlicz norm). There are
constants csk, L ≥ µ ≥ 0, α ∈ (0, 2], and σ ≥ 0 such that for each m ∈ [M ],

1. the covariates satisfy µnId ⪯ X(m)⊤X(m) ⪯ nLId and ∥x(m)
i ∥22 ≤ dL for all 1 ≤ i ≤ n;

2. the noise variables ε(m)
i , 1 ≤ i ≤ n, are i.i.d. with zero mean, satisfying E[|ε(m)

i |3] ≤
csk(E[|ε(m)

i |2])3/2;

3. the α-order Orlicz norm of ε(m)
i , 1 ≤ t ≤ n, is bounded as ∥ε(m)

i ∥Ψα ≤ σ.

Remark D.1. In Condition D.1, the first condition strengthens Condition 3, and is used
to control the coefficients involved in a normal approximation via the Berry-Esseen theorem
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(Berry, 1941). This condition holds with a high probability for randomly sampled design
matrices with i.i.d. features having a well-conditioned expected covariance matrix (Vershynin,
2018), including the stochastic contexts in bandits that we will use. The second condition,
while less standard in the literature, is also needed in the Berry-Esseen theorem. The third
condition generalizes the widely used sub-Gaussianity condition (Tripuraneni et al., 2021;
Han et al., 2020; Xu and Bastani, 2021; Ren and Zhou, 2023). This allows for many choices
of random noise, such as bounded noises (for any α > 0), sub-Gaussian noises (for α = 2),
or sub-exponential noises (for α = 1) like Poisson random variables, or noise with heavier
tails such as Weibull random variables with shape parameter α ∈ (0, 1]. A smaller α allows
for a heavier tail.

Under Condition D.1, we show that the c.d.f. of each normalized OLS estimate is ap-
proximately Gaussian up to a vanishing factor of

√
d/n. The key idea is to use Gaussian

approximation via the Berry-Esseen theorem (Lemma B.5). Based on this, we control the
error of the global estimate β̂⋆ in Proposition D.1. Compared to Lemma C.3 obtained under
Gaussian noise, the upper bound incurs an additional vanishing term of order O(

√
d/n). The

proof is in Appendix D.2.

Proposition D.1. Under Condition D.1, for any k ∈ [d] and m ∈ [M ], the c.d.f. F (m)
k of

β̂
(m)
ind,k (after standardization) satisfies

sup
z∈R
|F (m)

k (z)− Φ(z)| ≤ 0.6cskL
√
d

µ
√
n

.

Further, if n ≥ 36d(cskL/µ)
2, for any 0 < η ≤ 1

10
and k ∈ Iη, it holds for any 0 ≤ δ ≤M/20

that
P
(
|β̂⋆

k − β⋆
k| ≥ 1.25C0.45σ̄kα

′
Bk,δ

)
≤ 4e−2δ,

where Cbe is an abolute constant, σ̄k = σv
∑M

m=1

√
v
(m)
k /M for each k ∈ [d] with σ2

v ≜

Var(ε
(m)
i ), and α′

Bk,δ
≜ |Bk|/M +

√
1.01δ/(M − |Bk|) + 0.6cskL

√
d/(µ
√
n).

The Berry-Esseen theorem helps control the estimation error of the median-based esti-
mator β̂⋆ with high probability. To control the in-expectation estimation error of the final
estimates {β̂(m)

ft }m∈[M ], we also need the concentration of individual OLS estimates. This is
guaranteed by the generalized Hanson-Wright inequality (Lemma B.6), which characterizes
the tail of quadratic forms of random variables with bounded Orlicz norm. Combining these
two ingredients, we can bound the estimation errors of {β̂(m)

ft }m∈[M ] in Theorem D.1; with a
proof in Appendix D.3.

Theorem D.1. Under Condition 1 and D.1, for any p ∈ {1, 2}, m ∈ [M ], with β̂
(m)
MOLAR

from Algorithm 1, it holds that

∥β̂(m)
MOLAR − β

(m)∥pp = ÕP

(
σp

np/2

(
s+

d

Mp/2
+
d1+p/2

np/2

))
, (D.1)

where ÕP (·) absorbs a Polylog(M,µ, L) factor with degree and coefficients depending only on
α.

Consequently, if α = Θ(1) and n = Ω(d(M ∨ (d/s)2/p)), (D.1) matches (4) from Theorem
1.
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D.1 Preliminaries

To establish the proofs for Proposition D.1 and Theorem D.1, we first prove some technical
lemmas. Below, we view α as an absolute constant. Let σ2

v be the variance of noise ε(m)
i .

Under the assumtption that ∥ε(m)
i ∥Ψα ≤ σ, we first establish the following results.

Lemma D.1 (Relation between σv and σ). It holds that σ2
v ≤ 2Γ(1 + 2/α)σ2 = O(σ2)

where Γ(·) is the gamma function.

Proof. By Lemma B.1, we have σ2
v = E[(ε(m)

i )2] =
∫∞
0

P((ε(m)
i )2 ≥ t)dt =

∫∞
0

P(|ε(m)
i | ≥√

t)dt. Using Lemma B.4, we have P(|ε(m)
i | ≥

√
t) ≤ 2 exp(−(

√
t/σ)α). Therefore, by the

change of variables u =
√
t/σ, we have

σ2
v =

∫ ∞

0

P(|ε(m)
i | ≥

√
t)dt ≤ 2

∫ ∞

0

exp(−(
√
t/σ)α)dt

=4σ2

∫ ∞

0

exp(−uα)udu = 2Γ(1 + 2/α)σ2.

Lemma D.2 (Tail and integral of OLS estimate). For each m ∈ [M ], k ∈ [d], and
u > 0, it holds that

P
(
|β̂(m)

ind,k − β
(m)
k | ≥ (σv + uσ)

√
v
(m)
k

)
≤ 2 exp

(
− u

α

chw

)
. (D.2)

where chw is an absolute constant in Lemma B.6. Furthermore, we have for any p ∈ {1, 2}
and δ ∈ [0, 1] with ln(2/δ) ≥ 1/α that

Eδ[|β̂(m)
ind,k − β

(m)
k |

p] = O

(
δσp ln(2/δ)p/α

√
v
(m)
k

)
. (D.3)

Proof. Recall from (D.9) that β̂(m)
ind,k−β

(m)
k =

∑n
i=1⟨w

(m)
k , x

(m)
i ⟩ε

(m)
i with w(m)⊤

k ≜ (X(m)⊤X(m))−1
k,·

and
∑n

i=1⟨w
(m)
k , x

(m)
i ⟩2 = v

(m)
k . By Lemma B.6, we have for any t ≥ σ2v

(m)
k that

P
(∣∣∣∣(β̂(m)

ind,k − β
(m)
k

)2
− σ2

vv
(m)
k

∣∣∣∣ ≥ t

)
≤ 2 exp

− 1

chw

(
t

σ2v
(m)
k

)α/2
 .

Letting t = u2σ2v
(m)
k and using σv + uσ ≥

√
σ2
v + u2σ2 for any u ≥ 0, we have

P
(
|β̂(m)

ind,k − β
(m)
k | ≥ (σv + uσ)

√
v
(m)
k

)
≤ P

(
|β̂(m)

ind,k − β
(m)
k | ≥

√
σ2
v + u2σ2

√
v
(m)
k

)
≤P
(∣∣∣∣(β̂(m)

ind,k − β
(m)
k

)2
− σ2

vv
(m)
k

∣∣∣∣ ≥ u2σ2v
(m)
k

)
≤ 2 exp

(
− u

α

chw

)
.

We thus obtain (D.2). For (D.3), we only analyze the case p = 1 and the case p = 2
follows. To this end, we follow the proof of Lemma B.9. By using the smoothing technique
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in Lemma B.9, it suffices to consider noise to be continuous, in which case so is β̂(m)
ind,k−β

(m)
k .

Let Z ≜ β̂
(m)
ind,k − β

(m)
k . From (B.2), Eδ[|Z|] is given by the integral over the upper δ-level set

Aδ = {|Z| ≥ qδ} with P(|Z(ω)| ≥ qδ) = δ.
From (D.2), we readily find that

qδ ≤ (σv + c
1/α
hw ln(2/δ)1/ασ)

√
v
(m)
k . (D.4)

Plugging (D.4) and (D.2) into Lemma B.1, and using the change of variables t = (σv +

uc
1/α
hw σ)

√
v
(m)
k and qδ = (σv + u0c

1/α
hw σ)

√
v
(m)
k with u0 ≤ ln(2/δ)1/α, we obtain

Eδ[|Z|] = E[|Z|1(|Z| ≥ qδ)] = qδP(|Z| ≥ qδ) +

∫ ∞

qδ

P(|Z| ≥ t)dt

≤ δqδ + c
1/α
hw σ

√
v
(m)
k

∫ ∞

u0

min {δ, 2 exp (−uα)} du. (D.5)

where the last inequality follows from (D.2) and from P(|Z| ≥ t) ≤ P(|Z| ≥ qδ) = δ. Now,
we calculate that∫ ∞

u0

min {δ, 2 exp (−uα)} du = δ
(
ln(2/δ)1/α − u0

)
+ 2

∫ ∞

ln(2/δ)1/α
exp (−uα) du (D.6)

Note that ∫ ∞

ln(2/δ)1/α
e−uα

du =
1

α
Γ(1/α, ln(2/δ)) ≤ δ

2α
ln(2/δ)1/α, (D.7)

where the inequality is due to Γ(a, b) ≤ bae−b/(b + 1 − a) ≤ bae−b for any b ≥ a > 0.
Combining (D.6) and (D.7) with (D.5), we therefore obtain

Eδ[|Z|] ≤ δqδ + c
1/α
hw σ

√
v
(m)
k

(
δ
(
ln(2/δ)1/α − u0

)
+

δ

2α
ln(2/δ)1/α

)
= O

(
δ(σv + σ ln(2/δ)1/α)

√
v
(m)
k

)
= O

(
δσ ln(2/δ)1/α

√
v
(m)
k

)
.

Without loss of generality, we consider σv > 0 in the proofs of this section. Otherwise,
the setup becomes noiseless, and individual OLS estimates recover the parameters directly.

D.2 Proof of Proposition D.1

Proof. We have that β̂(m)
ind = (X(m)⊤X(m))−1X(m)⊤Y (m) = β(m) + (X(m)⊤X(m))−1X(m)⊤ε(m)

where ε(m) = (ε
(m)
1 , . . . , ε

(m)
n )⊤ is the noise vector. Using Condition D.1, we have, for each

covariate k ∈ [d],

Var(β̂
(m)
ind,k) = σ2

v∥(X(m)⊤X(m))−1
k,·X

(m)⊤∥22 = σ2
vv

(m)
k . (D.8)
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This also implies

β̂
(m)
ind,k = β

(m)
k +

n∑
t=1

⟨w(m)
k , x

(m)
i ⟩ε

(m)
i (D.9)

where w(m)
k ≜ (X(m)⊤X(m))−⊤

k,· and w
(m)⊤
k X(m)⊤X(m)w

(m)
k = v

(m)
k . Using Condition D.1, we

have (µn)−1 ≥ v
(m)
k = w

(m)⊤
k X(m)⊤X(m)w

(m)
k ≥ µn∥w(m)

k ∥22 and thus ∥w(m)
k ∥2 ≤ (µn)−1.

Thus, by further using Condition D.1, we obtain

E[|⟨w(m)
k , x

(m)
i ⟩ε

(m)
i |3] = |⟨w

(m)
k , x

(m)
i ⟩|3E[|ε

(m)
i |3]

≤∥w(m)
k ∥2∥x

(m)
i ∥2|⟨w

(m)
k , x

(m)
i ⟩|2cskσ3

v ≤
√
dLcsk⟨w(m)

k , x
(m)
i ⟩2σ3

v/(µn). (D.10)

Summing up (D.10) with respect all t ∈ [n], we find

n∑
i=1

E[|⟨w(m)
k , x

(m)
i ⟩ε

(m)
i |3] ≤

√
dLcskσ

3
v/(µn)

n∑
i=1

⟨w(m)
k , x

(m)
i ⟩2 =

√
dLcskσ

3
v/(µn)v

(m)
k . (D.11)

Therefore, plugging the bounds (D.8) and (D.11) into Lemma B.5, we find

sup
z∈R
|F (m)

k (z)− Φ(z)| ≤Cbe

∑n
t=1 E[|⟨w

(m)
k , x

(m)
t ⟩ε

(m)
i |3]

Var(β̂
(m)
ind,k)

3/2
≤ 0.6

√
dLcskv

(m)
k σ3

v/(µn)

σ2
vv

(m)
k σv/

√
Ln

=
0.6cskL

√
d

µ
√
n

.

Next, we use this to control the estimation error of β̂⋆. The analysis is similar to the
one of Lemma C.2. For each k ∈ [d] and z ∈ R, let F̂Gk

(z) := 1
|Gk|
∑

m∈Gk
1(β̂

(m)
ind,k ≤ z)

and F̂[M ](z) := 1
M

∑
m∈[M ] 1(β̂

(m)
ind,k ≤ z) be the empirical distribution of {β̂(m)

ind,k}m∈Gk
with

Gk ≜ [M ]\Bk and {β̂(m)
ind,k}m∈[M ], respectively. Since, for any m ∈ [M ]\Gk, β̂(m)

ind,k has mean β⋆
k

and variance σ2
vv

(m)
k , we have

E[F̂Gk
(z)] =

1

|Gk|
∑
m∈Gk

P(β̂(m)
ind,k ≤ z) =

1

|Gk|
∑

m∈[M ]\Bk

F
(m)
k

 z − β⋆
k

σv

√
v
(m)
k

 .

Let z1 be the value such that

1

|Gk|
∑
m∈Gk

Φ

 z1 − β⋆
k

σv

√
v
(m)
k

 =
1

2
+ α′

Bk,δ
,

where α′
Bk,δ

≜ |Bk|/M +
√

1.01δ/(M − |Bk|)+ 0.6cskL
√
d/(µ
√
n). By Hoeffding’s inequality,

for any δ ≥ 0 and z ∈ R, we have with probability at least 1− 2e−2δ that∣∣∣∣∣∣F̂Gk
(z)− 1

|Gk|
∑
m∈Gk

F
(m)
k

 z − β⋆
k

σ

√
v
(m)
k

∣∣∣∣∣∣ ≤
√

δ

M − |Bk|
.
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Similar to (C.6), it is clear that |F̂Gk
(z) − F̂[M ](z)| ≤ |Bk|/M for all z ∈ R. Combing the

above properties and using a union bound, we have with probability at least 1− 4e−2δ that

F̂[M ](z1) ≥F̂[M ](z1)− F̂Gk
(z1) + F̂Gk

(z1)− E[F̂Gk
(z1)]

+
1

|Gk|
∑
m∈Gk

F (m)
k

 z1 − β⋆
k

σv

√
v
(m)
k

− Φ

 z1 − β⋆
k

σv

√
v
(m)
k

+
1

|Gk|
∑
m∈Gk

Φ

 z1 − β⋆
k

σv

√
v
(m)
k


≥− |Bk|

M
−

√
δ

M − |Bk|
− 0.6cskL

√
d

µ
√
n

+
1

2
+ α′

Bk,δ
>

1

2
.

This implies β̂⋆
k = Med({β̂(m)

ind,k}m∈[M ]) ≤ z1. By a similar argument to the proof of Lemmas
C.2 and C.3, one can verify α′

Bk,δ
< 0.45 and thus upper bound z1 as β̂⋆

k ≤ z1 ≤ β⋆
k +

σ̃kG
′
[M ],Bk,δ,n

Cε. Similarly, it also holds that β̂⋆
k ≥ µ− 1.25C0.45σ̄kα

′
Bk,δ

, finishing the proof.

D.3 Proof of Theorem D.1

Proof. We provide the proof for p = 1; the case p = 2 follows similarly. Let I(m) = {k ∈
[d] : β

(m)
k = β⋆

k} for each m ∈ [M ]. We denote β̂(m)
MOLAR as β̂(m) below for simplicity. For each

m ∈ [M ], we bound E[[β̂(m)
k − β(m)

k |] for k ∈ [d] in two cases.

Case 1. For any k ∈ [d] (in particular, for k /∈ Iη or k /∈ I(m)), since γm = Õ(σ), following
the argument for Case 1 of Theorem 1 and using Lemma D.1, we readily obtain

E[|β̂(m)
k − β(m)

k |] = O

(
σv

√
v
(m)
k

)
+ Õ

(
σ

√
v
(m)
k

)
= Õ(σ/

√
n), (D.12)

where the last inequality is due to Lemma D.1. If n < 100d(CbecskL/µ)
2 or M ≤ 20 ln(M)∨

(α−1 + ln(3)), by summing up (D.12) with respect to all k ∈ [d], we obtain

E[∥β̂(m)
k − β(m)∥1] = Õ(dσ/

√
n).

This yields the conclusion in (D.1). Therefore, we next assume n ≥ 100d(CbecskL/µ)
2 and

M ≥ 20 ln(M) ∨ α−1.

Case 2. When k ∈ I(m) ∩ Iη, we will show

E[|β̂(m)
k − β(m)

k |] = Õ

(
σ
√
µn

(
|Bk|
M

+
1√
M

+

√
d√
n

))
. (D.13)

Let δ = ln(M) ∨ (α−1 + ln(3)) = Õ(1). If 1.25C0.45σ̃kα
′
Bk,δ
≥ σv

√
v
(m)
k , then from (D.12),

we directly conclude (D.13). Otherwise suppose 1.25C0.45σ̃kα
′
Bk,δ
≤ σv

√
v
(m)
k . Define the

event Ek = {|β̂⋆
k − β⋆

k| ≤ 1.25C0.45σ̃kα
′
Bk,δ
}. Since M ≥ 20δ, using Proposition D.1, we have

P((Ek)c) ≤ 4e−δ. Furthermore, by the condition G′
[M ],Bk,δ,n

σ̃k ≤ σv

√
v
(m)
k , we have that the
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event Ek implies |β̂⋆
k − β⋆

k| ≤ σv

√
v
(m)
k . On the event Ek, if |β̂⋆

k − β̂
(m)
ind,k| > γm

√
v
(m)
k , then, for

k ∈ Iη ∩ I(m)

|β̂(m)
ind,k − β

(m)
k | = |β̂

(m)
ind,k − β

⋆
k| ≥|β̂

(m)
ind,k − β̂

⋆
k| − |β̂⋆

k − β⋆
k| > (γm − σv)

√
v
(m)
k .

Let
F (m)

k ≜

{
|β̂(m)

ind,k − β
(m)
k | ≤ (γm − σv)

√
v
(m)
k

}
.

Since γm − σv ≥ σv + c
1/α
hw δ

1/ασ, by (D.2), we have

P(F (m)
k ) ≤P

(
|β̂(m)

ind,k − β
(m)
k | ≥ (σv + c

1/α
hw δ

1/ασ)

√
v
(m)
k

)
≤ 2e−δ.

Since event F (m)
k ∩ Ek implies that [β̂

(m)
ft ]k = β̂⋆

k for k ∈ Iη ∩ I(m). In other words, with
probability at least P(Ek ∩ F (m)

k ) ≥ 1− 6e−δ, it holds that

|β̂(m)
k − β(m)

k | = |β̂
⋆
k − β

(m)
k | ≤ 1.25C0.45σ̃kα

′
Bk,δ

.

Furthermore, using (C.11) and Lemma D.2 (with ln(2/(6e−δ)) ≥ 1/α) and Lemma D.1, we
have that for any k ∈ Iη ∩ I(m),

E[|β̂(m)
k − β(m)

k |] ≤ Õ
(
σ̃kG

′
[M ],Bk,δ,n

)
+ E6e−δ

[
|β̂(m)

ind,k − β
(m)
k |+ γm

√
v
(m)
k

]
= Õ

(
σv√
µn

(
|Bk|
M

+
1√
M

+

√
d√
n

))
+ Õ

(
δ√
n
(σv + σ)

)

= Õ

(
σ
√
µn

(
|Bk|
M

+
1√
M

+

√
d√
n

))
.

Bounding the summed error. Combining the cases (D.12), (D.13), and using |(I(m))c| ≤
s, we obtain

E[∥β̂(m)
MOLAR − β

(m)∥1] ≤
σ
√
µn

Õ

 ∑
k∈Iη∩I(m)

(
|Bk|
M

+
1√
M

+

√
d√
n

)
+ |(Iη ∩ I(m))c|


≤ σ
√
µn

Õ

s+ d√
M

+

√
d√
n
+
∑
k∈[d]

(
|Bk|
M

1(|Bk|/M < η) + 1(|Bk|/M ≥ η)

) . (D.14)

Using Lemma B.10 with a = 1 and xk = |Bk|/M for all k ∈ [d], we have∑
k∈[d]]

(
|Bk|
M

1(|Bk|/M < η) + 1(|Bk|/M ≥ η)

)
≤ ⌈s/η⌉. (D.15)

Letting η = 1/10 = Θ(1) and plugging (D.15) into (D.14), we find the conlusion.
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E Extensions to the High-Dimensional Case
Our results in Section 2.2 rely on lower bounds on the singular values of the design matrices,
i.e., on nm ≫ d for all m ∈ [M ]. When d≫ nm, the design matrices are not invertible, and
thus the covariate-wise shrinkage in Algorithm 1 becomes pathological. In this case, given a
global estimate β̂⋆, one can employ a LASSO-based debiasing step instead of covariate-wise
shrinkage as in Xu and Bastani (2021): for all m ∈ [M ],

β̂(m) = argmin
β∈Rd

1

2nm

∥X(m)β − Y (m)∥22 + λm∥β − β̂⋆∥1. (LASSO-based debiasing)

Given a global estimate β̂⋆ that is accurate on a support set G ⊆ [d] (i.e., ∥β̂⋆
G − β⋆

G∥1 is
small), the performance of the LASSO-based debiasing can be analyzed as follows:

Proposition E.1. Under Conditions 1, 2, and 3, taking λm = cσ
√

ln(dnm)/nm, if nm ≥
c ln(d)(s+ |Gc|) for a sufficiently large c only depending on Σ(m), where G ⊆ [d] is a support
set, it holds that

∥β̂(m) − β(m)∥1 = ÕP

(
σ(s+ |Gc|)
√
nm

+ ∥β̂⋆
G − β⋆

G∥1
)
. (E.1)

where for any vector v, vG is the sub-vector of v with entries in G.

Proof. Define the event E be the intersection of {n−1
m ∥X(m)⊤(X(m)β(m) − Y (m))∥∞ ≤ λm/2}

and {
∥X(m)v∥22 ≥ nmc1∥v∥2

(
∥v∥2 − c1

√
ln(d)/nm∥v∥1

)
, ∀ v ∈ Rd

}
, (E.2)

where c1 is a sufficiently large constant that only depends µ and L in Condition 3. Here
(E.2) is referred to as the restricted strong convexity and holds with probability at least
1− exp(−c1µnm) (Negahban et al., 2012). By the definition of λm, {n−1

m ∥X(m)⊤(X(m)β(m)−
Y (m))∥∞ ≤ λm/2} holds with probability 1− 1/(nmd). Thus, P(E)→ 1 as nm →∞.

Using

1

2nm

∥X(m)β̂(m) − Y (m)∥22 ≤
1

2nm

∥X(m)β(m) − Y (m)∥22 + λm∥β(m) − β̂⋆∥1 − λm∥β̂(m) − β̂⋆∥1,

we have

1

2nm

∥X(m)(β̂(m) − β(m))∥22 =
1

2nm

∥X(m)β̂(m) − Y (m)∥22 +
1

2nm

∥X(m)β(m) − Y (m)∥22

+
1

nm

⟨X(m)β̂(m) − Y (m),X(m)β(m) − Y (m)⟩

≤ 1

nm

⟨β̂(m) − β(m),X(m)⊤(X(m)β(m) − Y (m))⟩+ λm∥β(m) − β̂⋆∥1 − λm∥β̂(m) − β̂⋆∥1.
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Thus, letting Jm ≜ Gc ∩ supp(β(m) − β⋆), we have |Jm| ≤ s + |Gc| by Condition 1. Since
β
(m)
J c
m

= β⋆
J c
m
, conditioned on the event E, we have

0 ≤ 1

2nm

∥X(m)(β̂(m) − β(m))∥22 ≤ λm∥β(m) − β̂⋆∥1 − λm∥β̂(m) − β̂⋆∥1 +
λm
2
∥β̂(m) − β(m)∥1

=λm∥β(m)
Jm
− β̂⋆

Jm
∥1 + λm∥β⋆

J c
m
− β̂⋆

J c
m
∥1 − λm∥β̂(m)

Jm
− β̂⋆

Jm
∥1 − λm∥β̂(m)

J c
m
− β̂⋆

J c
m
∥1

+
λm
2
∥β̂(m)

Jm
− β(m)

Jm
∥1 +

λm
2
∥β̂(m)

J c
m
− β(m)

J c
m
∥1

≤3λm
2
∥β̂(m)

Jm
− β(m)

Jm
∥1 −

λm
2
∥β̂(m)

J c
m
− β(m)

J c
m
∥1 + 2λm∥β̂⋆

J c
m
− β⋆

J c
m
∥1. (E.3)

Noting J c
m ⊆ G, we have

∥β̂(m)
J c
m
− β(m)

J c
m
∥1 ≤3∥β̂(m)

Jm
− β(m)

Jm
∥1 + 4∥β̂⋆

G − β⋆
G∥1. (E.4)

Consequently, it holds that

∥β̂(m) − β(m)∥1 ≤4∥β̂(m)
Jm
− β(m)

Jm
∥1 + 4∥β̂⋆

G − β⋆
G∥1

≤4|Jm|1/2∥β̂(m) − β(m)∥2 + 4∥β̂⋆
G − β⋆

G∥1, (E.5)

where we use Young’s inequality in the last equation. Denote ∥β̂⋆
G −β⋆

G∥1 as err⋆. Now using
the restricted strong convexity and (E.4) in (E.3), we obtain

2λm|Jm|1/2∥β̂(m) − β(m)∥2 + 2λmerr
⋆

≥c1
2
∥β̂(m) − β(m)∥2

∥β̂(m) − β(m)∥2 − 4c1

√
ln(d)|Jm|

nm

∥β̂(m) − β(m)∥2 − 4c1

√
ln(d)

nm

err⋆


+
λm
2
∥β̂(m) − β(m)∥1

Suppose nm ≥ c ln(d)(s+ |Gc|) with c sufficiently large such that 4c1
√
ln(d)|Jm|/nm ≤ 1/3.

If err⋆ ≤ |Jm|1/2∥β̂(m) − β(m)∥2, we obtain

2λm|Jm|1/2∥β̂(m) − β(m)∥2 + 2λmerr
⋆ ≥ c1

6
∥β̂(m) − β(m)∥22 +

λm
2
∥β̂(m) − β(m)∥1.

Using Young’s inequality 2ab ≤ a2 + b2, we have ∥β̂(m) − β(m)∥1 = O (λm|Jm|+ err⋆). If
err⋆ > |Jm|1/2∥β̂(m) − β(m)∥2, using (E.5), we directly obtain ∥β̂(m) − β(m)∥1 = O (err⋆).

Notably, proposition E.1 does not require nm > d and directly implies

Corollary E.1. Suppose

∥[β̂⋆]G − β⋆]G∥1 = ÕP (dσ/
√
n[M ] + sσ/

√
nm) for some |Gc| = O(s). (E.6)

If nm ≥ cs ln(d) with c sufficiently large, LASSO-based debiasing gives the minimax optimal
estimation error:

∥β̂(m) − β(m)∥1 = ÕP

(
dσ
√
n[M ]

+
sσ
√
nm

)
.
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Algorithm 1 Transfer learning via constrained ℓ1-minimization
Input: {(X(m), Y (m))}Mm=1, regularization {λm = cσ

√
ln(nmd)/nm}Mm=1 and λall =

cσ
√
ln(p)/n[M ]

Step 1: Compute an initial estimate β̂⋆
init = argminβ∈Rd

1
2n1
∥X(1)β − Y (1)∥22 + λ1∥β∥1

Step 2: Set
β̂⋆, δ̂(2), · · · , δ̂(m) = argmin

β, ∥δ(m)∥2≤b

λall∥β∥1 +
M∑

m=2

λm∥δ(m)∥1

s.t.


∥X(m)⊤(X(m)(β + δ(m))− Y (m))∥∞ ≤ λm, ∀ 2 ≤ m ≤M

∥
∑M

m=1X
(m)⊤(X(m)(β + δ(m))− Y (m))∥∞ ≤ λall

∥β − β̂⋆
init∥1 ≤ λ−1

1

Output: β̂⋆

When nm > d for all m ∈ [M ], the weighted median-based global estimate given by
Algorithm 1 satisfies (E.6). However, the global estimate is not applicable if nm < d so
that the data matrix X(m)⊤X(m) is not full-rank. Obtaining a good global estimate β̂⋆ is
challenging when nm < d as the parameters {β(m)}Mm=1 can be dense. Fortunately, we can
make progress by additionally assuming the parameters {β(m)}Mm=1 are sparse (Condition
E.1) and the heterogeneity is ℓ2-bounded.

Condition E.1 (Sparse global parameter). We have ∥β⋆∥0 ≤ k for some k ∈ [s, d]
and maxm∈[M ] ∥β(m) − β⋆∥2 ≤ b for some constant b ≥ 0.

To this end, we borrow the transGLM method (Li et al., 2023), which leverages multiple
datasets with sparse heterogeneity to learn a single generalized linear model. In the linear
case, transGLM can be simplified to Algorithm 1. The estimation error of β̂⋆ for β⋆ directly
follows from Li et al. (2023, Theorem 3.1). We paraphrase their result in our setup with
notations defined in this paper as follows:

Theorem E.1 (Li et al. (2023), Theorem 3.1). Suppose

n[M ] ≥ c1max{k2 ln(d)2,Mn1}, n1 ≥ c1ks ln(d)
2,

where c1 is some large enough quantity not depending on d, k, s, and {nm}Mm=1. Under
Conditions 1, 2, and 3, it holds that

∥β̂⋆
G − β⋆

G∥1 = ÕP

(
kσ
√
n[M ]

+

√
skσ
√
n1

)
,

where G = [d]\supp(β1 − β) with |Gc| ≤ s.

By Combining Theorem E.1 with Proposition E.1, we have

Corollary E.2 (Transfer Learning + Lasso Debiasing). Suppose nm ≥ c1ks ln(d)
2 for all

1 ≤ m ≤M with n1/minm nm = O(1), and n[M ] ≥ c1k
2 ln(d)2 where c1 is some large enough

value not depending on d, k, s, and {nm}Mm=1. Under Conditions 1, 2, and 3, the task-wise

23



estimates obtained through applying the LASSO-based debiasing to the global estimate output
by Algorithm 1 achieves for 1 ≤ m ≤M ,

∥β̂(m) − β(m)∥1 = ÕP

(√
skσ
√
nm

+
kσ
√
n[M ]

)
.

Corollary E.2 bounds the estimation error of the multitask approach with nm ≥ c1ks ln(d)
2

and n[M ] ≥ c1k
2 ln(d)2, which holds in the high-dimensional case so long as ks≪ d and M is

large. Furthermore, the multitask approach outperforms the individual LASSO, the single-
task minimax optimal method, whose estimation error is kσ/

√
nm.
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F Inference for Task-wise Parameters
In this section, we consider statistical inference for {β(m)}Mm=1 in the multi-task learning
setting. Notably, the MOLAR estimates obtained in Algorithm 1 and the high-dimensional
estimates given in Appendix E are biased. It is tempting to consider debiasing them to
facilitate inference as in (Zhang and Zhang, 2014; Van de Geer et al., 2014; Javanmard and
Montanari, 2014). However, debiasing may increase the estimation error of our multi-task
estimate, and thus likely cannot give confidence intervals with lengths shorter than those of
the individual OLS estimates.

To show the potential of narrower confidence intervals in our setup, for simplicity, we
consider n1 = · · · = nM =: n and σ1 = · · · = σM =: σ, and assume σ is known throughout
the section. The case where {σm}Mm=1 or {nm}Mm=1 are non-identical can be handled similarly
by adjusiting the weights {wm}Mm=1 in the collaboration step. We additionally make the
following assumption to constrain the distribution of heterogeneity. Again, here the number
1/5 is taken for simplicity and can be, in principle, replaced with a constant number in
[0, 1/2).

Condition F.1 (Bounded entry-wise disagreement). We assume |Bk|/M ≤ 1/5 for
all k ∈ [M ].

Given a fixed and properly small tolerance α, for each k ∈ [d] and m ∈ [M ], we let

Ĩ
(m)
k =

[
β̂
(m)
ind,k − σz1−α/2

√
v
(m)
k , β̂

(m)
ind,k + σz1−α/2

√
v
(m)
k

]
be the interval with coverage 1−α/2

for β(m)
ind,k centered at β̂(m)

ind,k where v(m)
k =

√
[X(m)⊤X(m))−1]k,k.We let I⋆k be an interval with

coverage 1 − α/2 for β⋆
k centered at β̂⋆

k . Based on Lemma C.2 and (C.8), for αBk,δ < 0.45,
we can set

I⋆k = [β̂⋆
k − 1.25C0.45αB,δσ̄k, β̂

⋆
k + 1.25C0.45αB,δσ̄k]

with δ = ln((8/α)∨(2n))/2 (i.e., 2e−2δ = (α/4)∧n−1), αBk,δ ≜ |Bk|/M+
√

1.01δ/(M − |Bk|),

and σ̄k = σ
∑

m∈[M ]

√
v
(m)
k /M . Since v(m)

k = ÕP (1/n), we have length(Ĩ
(m)
k ) = ÕP (1/

√
n)

and length(I⋆k) = ÕP (αBk,δ/
√
n) for all k ∈ [d] and m ∈ [M ]. Noting

∑d
k=1 |Bk|/M = s/d,

we further have
∑d

k=1 length(I
⋆
k) = OP (s/

√
n+ d/

√
Mn).

Since {I⋆k}dk=1 are narrower than {Ĩ(m)
k }dk=1 on average, we use the following strategy to

construct the ultimate confidence interval I(m)
k for β(m)

k with at least 1−α entry-wise coverage.

We first compare β̂(m)
ind,k and β̂⋆

k . If they are close enough such that |β̂(m)
ind,k − β̂⋆

k| < γ̃m

√
v
(m)
k

for some pre-specified γ̃m, it is likely that β(m)
k = β⋆

k and we thus adopt the confidence
interval I⋆k as the final interval I(m)

k ; otherwise we adopt Ĩ(m)
k as I(m)

k . Formally, we aim
to attain P(β(m)

k ∈ I(m)
k ) ≥ 1 − α and the total length of entry-wise confidence intervals is∑d

k=1 length(I
(m)
k ). We show the following guarantee for the confidence intervals {I(m)

k }dk=1.
Without loss of generality, we assume M ≥ c̃ ln(n) for a sufficiently large constant c̃.

Proposition F.1. For any α ∈ (2e−2cM , 1] with some constant c sufficiently small, for any
m ∈ [M ], if we set γ̃m =

√
2 ln((2n) ∨ (8/α))σ, it holds for all k ∈ [d] that

P
(
β
(m)
k ∈ I(m)

k

)
≥ 1− α
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provided |β(m)
k − β⋆

k| > 3max{ln(n ∨ (4/α))

√
v
(m)
k σ, 1.25CαBk,δ

αB,δσ̄k} = Ω̃P (1/
√
n), where

δ = ln((2n) ∨ (8/α)) for β(m)
k ̸= β⋆

k. Furthermore, the total length satisfies

d∑
k=1

length(I
(m)
k ) = ÕP (s/

√
n+ d/

√
Mn).

Proof. Clearly, v(m)
k = ÕP (1/n) so long as n ≫ d. We prove the result by considering two

cases.
Case 1: β(m)

k = β⋆
k . In this case, given the choice of γ̃m and Lemma C.2, we can easily verify

P(|β̂(m)
ind,k − β̂⋆

k| ≥ γ̃m

√
v
(m)
k ) = (α/4) ∧ n−1 ≤ α/2. This, combined with P(β⋆

k /∈ I⋆k) ≤ α/2
and a union bound, leads to

P(β(m)
k ∈ I⋆k) ≥ P

(
β⋆
k ∈ I⋆k and |β̂(m)

ind,k − β̂
⋆
k| < γ̃m

√
v
(m)
k

)
≥ 1− α.

Furthermore, with probability P
(
|β̂(m)

ind,k − β̂⋆
k| < γ̃m

√
v
(m)
k

)
= 1− o(1) we have that

length(I
(m)
k ) = length(I⋆k) = O(αBk,δ/

√
n) = Õ

((
|Bk|/M + 1/

√
M
)√

v
(m)
k

)
.

Case 2: β(m)
k ̸= β⋆

k . Denote |β(m)
k − β⋆

k| as ϵ. In this case, we shall prove that |β̂(m)
ind,k − β̂⋆

k| ≥

γ̃m

√
v
(m)
k with a high probability. We first see that

|β̂(m)
ind,k − β̂

⋆
k| =|β̂

(m)
ind,k − β

(m)
k + β

(m)
k − β⋆

k + β⋆
k − β̂⋆

k|

≥ϵ− |β̂(m)
ind,k − β

(m)
k | − |β

⋆
k − β̂⋆

k|. (F.1)

Therefore, |β̂(m)
ind,k− β̂⋆

k| < γ̃m

√
v
(m)
k suggests that one of |β̂(m)

ind,k− β
(m)
k | ≥ (ϵ− γ̃m

√
v
(m)
k )/2 or

|β⋆
k − β̂⋆

k| ≥ (ϵ− γ̃m
√
v
(m)
k )/2 must hold. However, by the condition on ϵ and γ̃m, using the

sub-Gaussianity of β̂(m)
ind,k and Lemma C.2, we have

P
(
|β̂(m)

ind,k − β
(m)
k | ≥ (ϵ− γ̃m

√
v
(m)
k )/2

)
≤ P

(
|β̂(m)

ind,k − β
(m)
k | ≥ γ̃m

√
v
(m)
k

)
≤ α

4

∧ 1

n
≤ α

4
(F.2)

and

P
(
|β⋆

k − β̂⋆
k| ≥ (ϵ− γ̃m

√
v
(m)
k )/2

)
≤ P

(
|β⋆

k − β̂⋆
k| ≥ 1.25CαBk,δ

αB,δσ̄k

)
≤ α

4

∧ 1

n
≤ α

4
.

(F.3)
where δ = ln((8/α)∨(2n))/2 is much smaller than M so that αBk,δ < 0.45. Combining (F.2),
(F.3) with P(β(m)

k /∈ I(m)
k ) ≤ α/2 and a union bound, we find

P
(
β
(m)
k ∈ I⋆k) ≥ P(β(m)

k ∈ I(m)
k and |β̂(m)

ind,k − β̂
⋆
k| ≥ γ̃m

√
v
(m)
k

)
≥ 1− α.
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Denoting {k ∈ [d] : β
(m)
k = β⋆

k} as I(m) with |I(m)| = s, combining the two cases, we have

d∑
k=1

length(I
(m)
k ) = ÕP

|I(m)|/
√
n+

∑
k/∈I(m)

αBk,δ/
√
n

 .

By noting that ∑
k/∈I(m)

αBk,δ ≤
∑
k∈[d]

αBk,δ = Õ(s+ d/
√
M),

we complete the proof.

Proposition F.1 shows that our confidence intervals for the entries of the task-wise pa-
rameters {β(m)}Mm=1 have total length ÕP (s/

√
n + d/

√
Mn). When s ≪ d and M ≫ 1, the

length is shorter than ÕP (d/
√
n), the length of the standard intervals based on the individual

OLS estimates.
However, we remark that this proposition requires that the unequal entries between

β(m) and β⋆ be separated by Ω(1/
√
n). This condition turns out to be necessary to attain

confidence intervals with a total length shorter than ÕP (d/
√
n). To see this, we can argue

as follows. Even if the global parameter β⋆ was exactly known, corresponding to the case
where M = ∞, our setup would reduce to constructing a confidence interval for β(m) − β⋆,
which is s-sparse. This ideal setting becomes an example of inference for single-task sparse
linear regression studied by e.g., Cai and Guo (2017). That work shows that the minimax
optimal length of confidence intervals for individual entries is ΩP (1/

√
n) when the non-zero

entries of the sparse parameter are not constrained to be away from zero (i.e., each entry
is either zero or of magnitude O(1/

√
n)). One can follow the same idea to show that the

total length of confidence intervals with entry-wise coverage is ΩP (d/
√
n), irrespective of

the parameter’s sparsity. The challenge in constructing shorter confidence intervals mainly
lies in identifying the support set of the sparse parameter when the non-zero entries of the
parameter are O(1/

√
n).
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G Results on GLMs
Given the predictors x ∈ Rd, if the response y follows the generalized linear models (GLMs),
then its conditional distribution takes the form, for all x ∈ Rd,

y | x ∼ P(y | x) = ρ(y) exp (y⟨x, β⟩ − ψ(⟨x, β⟩)) (G.1)

where β ∈ Rd is the unknown parameter, and ρ and ψ are some known univariate functions.
Two important properties of GLMs are E[y | x] = ψ′(⟨x, β⟩) and Var(y | x) = ψ′′(⟨x, β⟩)
(McCullagh and Nelder, 1989). In particular, for linear models with Gaussian noise, we have
a continuous response y and ψ(u) = u2/(2σ2) for all u ∈ R.

In the scenario of multitask GLMs, the individual estimate β̂(m)
ind can be taken as the

minimizer of the negative log-likelihood function

β̂
(m)
ind := argmin

β∈Rd

1

nm

nm∑
i=1

(
−y(m)

i ⟨x
(m)
i , β⟩+ ψ(⟨x(m)

i , β⟩)
)
.

Due to the nonlinearity of GLMs, to apply the MOLAR method, we also need to replace the
inverse data matrix (X(m)⊤X(m))−1 with (X(m)⊤D̂(m)X(m))−1 where D̂(m) ∈ Rnm×nm is the
diagonal matrix with elements {ψ′′(⟨x(m)

i , β̂
(m)
ind ⟩)}

nm
i=1. The two adjustments form Algorithm 2.

Algorithm 2 MOLAR-GLM: Weighted-Median-based Multitask GLM
Input: {(X(m), Y (m))}Mm=1, thresholds {γm}Mm=1, weights {wm}Mm=1

for m ∈ [M ] do

Let β̂(m)
ind be the individual MLE for (X(m), Y (m))

end for
Let β̂⋆ = WMed({β̂(m)

ind }Mm=1; {wm}Mm=1) be the covariate-wise weighted median
for m ∈ [M ] and k ∈ [d] do

/* Option I: hard thresholding */

β̂
(m)
MOLAR,k = β̂⋆

k if |β̂⋆
k − β̂

(m)
ind,k| ≤ γm

√
[(X(m)⊤D̂(m)X(m))−1]k,k else β̂

(m)
ind,k

/* Option II: soft thresholding */

β̂
(m)
MOLAR,k = β̂⋆

k + SoftThresholding

(
β̂
(m)
ind,k − β̂⋆

k ; γm

√
[(X(m)⊤D̂(m)X(m))−1)−1]k,k

)
end for
Output: {β̂(m)

MOLAR}Mm=1

We analyze MOLAR-GLM for sparsely heterogeneous parameters {β(m)}Mm=1 satisfying
Condition 1 in the asymptotic sense where sample sizes are sufficiently large. For simplicity,
we only consider n1 = · · · = nM =: n. Our analysis is built on the asymptotic normality of
individual GLM estimates (Van de Geer et al., 2014; Xia et al., 2023). Specifically, suppose
the following holds.
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Condition G.1 (Conditions for GLMs). For each m ∈ [M ], the following conditions
hold for the GLM model (G.1).

1. β(m) is the unique maximizer to E[y(m)
i ⟨x

(m)
i , β⟩ − ψ(⟨x(m)

i , β⟩] and P (y
(m)
i | x(m)

i ) is
quadratic mean differentiable at β(m).

2. 1
n

∑n
i=1 y

(m)
i ⟨x

(m)
i , β⟩−ψ(⟨x(m)

i ⟩, β⟩ converges uniformly to E[y(m)
i ⟨x

(m)
i , β⟩−ψ(⟨x(m)

i , β⟩]
as n→∞.

3. ψ is twice continuously differentiable and ψ is uniformly bounded.

4. The population Fisher matrix Σ(m) ≜ E[x(m)
i x

(m)⊤
i ψ′′(⟨x(m)

i , β(m)⟩)] is positive definite
and its eigenvalues are bounded and bounded away from 0, i.e.,

cId ⪯ E[x(m)
i x

(m)⊤
i ψ′′(⟨x(m)

i , β(m)⟩)] ⪯ CId

for some Ω(1) = c ≤ C = O(1).

Condition G.1 is assumed for technical simplicity, which directly facilitates the analysis
of maximum likelihood estimates in (Van de Geer et al., 2014) and can be possibly relaxed.
Specifically, we can obtain that

Proposition G.1 (Asymptotic normality). Under Condition G.1, it holds that for each
m ∈ [M ] that

√
n(β̂

(m)
ind − β

(m))
d→ N

(
0, (Σ(m))−1

)
and V (m)/n

p→ Σ(m),

where V (m) ≜ X(m)⊤D̂(m)X(m).

Proof. Under Condition G.1, it is easily have V (m)/n
p→ Σ(m). Since 1

n

∑n
i=1 y

(m)
i ⟨x

(m)
i , β⟩ −

ψ(⟨x(m)
i , β⟩ converges uniformly to E[y(m)

i ⟨x
(m)
i , β⟩−ψ(⟨x(m)

i , β⟩] and E[y(m)
i ⟨x

(m)
i , β⟩− ψ(⟨x(m)

i , β⟩]
has a unique maximum β(m) that is well-separated due to the quadratic mean differentiablil-
ity, β̂(m)

ind

p→ β(m) by Van de Geer et al. (2014, Theorem 5.7). Then Van de Geer et al. (2014,
Theorem 5.39) guarantees

√
n(β̂

(m)
ind − β(m))

d→ N (0, (Σ(m))−1)

Given the asymptotic normality of individual estimates, one can establish the following
asymptotic bounds for the tail probability of the global estimate β̂⋆.

Lemma G.1. Under Condition G.1, for any 0 < η ≤ 1
5

and k ∈ Iη, it holds for any
0 ≤ δ ≤M/21 and n sufficiently large that

P
(
|β̂⋆

k − β⋆
k| ≥ 2C0.45αBk,δv̄[M ],k

)
≤ 2e−2δ,

where v̄[M ],k =
∑

m∈[M ][(Σ
(m))−1/2]k,k/(

√
nM) and αBk,δ follows from the definition in (C.5).
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Proof. By Proposition G.1, we know
√
n(β̂

(m)
ind,k−β

(m)
k )

d→ N
(
0, [(Σ(m))−1]k,k

)
for any k ∈ [d]

and m ∈ [M ]. Note that the weighted median of {β̂(m)
ind,k}Mm=1 is upper and lower bounded by

the (1/2 + |Bk|/M)-weighted-quantile and (1/2− |Bk|/M)-weighted-quantile of {β̂(m)
ind,k}m∈Gk

respectively, where Gk ≜ {m ∈ [M ] : β
(m)
k = β⋆

k}. The (1/2 + |Bk|/M)-weighted-quantile of
{β̂(m)

ind,k}m∈Gk
is equivalent to the (1/2+ |Bk|/M)-weighted-quantile of {

√
n(β̂

(m)
ind,k−β

(m)
k )}m∈Gk

after scaling and translation. We can also leverage Lemma C.1 to cover the case of asymptotic
normality: for any α ∈ [0, 1/2), let µ1/2+α be value such that

∑
i∈Gk

wiΦ

(
µ1/2+α

[(Σ(m))−1]k,k

)
=

(
1

2
+ α

)
WGk

,

where Φ is the c.d.f. of the standard normal distribution. By the asymptotic normality of√
n(β̂

(m)
ind,k − β

(m)
k ), we know

∑
i∈Gk

wiP(
√
n(β̂

(m)
ind,k − β

(m)
k ) ≤ µ1/2+1.01α)→

∑
i∈Gk

wiΦ

(
µ1/2+1.01α

[(Σ(m))−1]k,k

)
=

(
1

2
+ 1.01α

)
WGk

.

Therefore, for n sufficiently large, we have∑
i∈Gk

wiP(
√
n(β̂

(m)
ind,k − β

(m)
k ) ≤ µ1/2+1.01α) ≥

(
1

2
+ α

)
WGk

,

which implies that the weighted population (1/2 + α)-quantile of {
√
n(β̂

(m)
ind,k − β

(m)
k )}m∈Gk

is upper bounded by µ1/2+1.01α, which is in turn upper bounded by the one in Lemma C.1.
The lower bound can be argued similarly. In summary, we can give a bound for β⋆

k similarly
to Lemma C.3 for sufficiently large n by relaxing a small number close to Cα to as C1.01α,
which gives us the result.

Furthermore, one can easily follow the proof of Theorem 1 to bound the estimation errors
of the MOLAR estimates in GLMs for sufficiently large n. We omit the proof here.

Theorem G.1 (Error bound for task-wise parameters). Under Conditions 1 and
G.1, taking γm = c1

√
ln(M ∧ d) for all m ∈ [M ] with c1 sufficiently large, with β̂

(m)
MOLAR

from Algorithm 2 using either Option I or II, it holds for any p ∈ {1, 2}, m ∈ [M ] and n
sufficiently large that

np/2∥β̂(m)
MOLAR − β

(m)∥pp = ÕP

(
s+

d

Mp/2

)
.

An analytical comparison of MOLAR-GLM with related methods (Tian and Feng, 2022;
Li et al., 2023) is in Table 1. Tian and Feng (2022); Li et al. (2023) originally considered
sparse parameters, and we adjust their results to dense parameters and state them with no-
tations defined in our manuscript for a clear comparison. We observe that while our method
may require larger task-wise sample sizes, it theoretically has faster rates of convergence
than existing methods for GLMs (with dense parameters).
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Table 1: Bounds on the estimation error
√
n∥β̂(m)−β(m)∥1 for GLMs. Suppose n1 = · · · = nM =: n.

Constants and logarithmic factors are omitted for clarity. The results Tian and Feng (2022); Li et al.
(2023) are adjusted to dense parameters (i.e., ∥β(m)∥0 = Ω(d) for all m ∈ [M ]).
Method Heterogeneity Condition Rate Sample Size

Tian and Feng (2022) maxm∈[M ] ∥β(m) − β⋆∥1 = h (n1/4h1/2) ∧ (
√
nh) + d/

√
M Mn≫ d, n≫ h2

Li et al. (2023)

{
maxm∈[M ] ∥β(m) − β⋆∥0 = s

maxm∈[M ] ∥β(m) − β⋆∥2 = O(1)

√
sd+ d/

√
M Mn≫ d2, n≫ sd

MOLAR-GLM maxm∈[M ] ∥β(m) − β⋆∥0 = s s+ d/
√
M n sufficiently large

Lower Bound maxm∈[M ] ∥β(m) − β⋆∥0 = s s+ d/
√
M —–

Acknowledging the importance of extending the application of the MOLAR method to
encompass a broader setup, particularly in the context of generalized linear models for n
being small, we think that a detailed investigation and optimality in GLMs particularly for
n being small may require entirely different algorithmic designs and should indeed serve as
an independent and valuable avenue for future research.
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H Results on Contextual Bandits under Model-C

H.1 Lemma H.1 and its Proof

To analyze individual regret, we need that the empirical covariance matrices, at the end of
each batch, are well-conditioned with high probability, even when the arms are adaptively
chosen. We show Lemma H.1, which guarantees that for any m ∈ [M ], with high probability
the singular values of the contexts X

(m)
q are lower bounded. Lemma H.1 is similar to (Han

et al., 2020, Lemma 4) and (Ren and Zhou, 2023, Lemma 5) in the single-bandit regime.
However, Han et al. (2020) assume Gaussian contexts, which is stronger than our Condition 8
and 9, while Ren and Zhou (2023) consider an s-sparse parameter and sub-Gaussian contexts.
The proof of Lemma H.1 relies on using an ε-net argument.

Lemma H.1. Under Conditions 8 and 9, for some Cb ≥ 2 only depending on cx, and for
any 0 ≤ q < Q, it holds with probability at least 1− 1/T that λmin(X

(m)⊤
q X

(m)
q ) ≥ nm,qµcx/4,

for all m ∈ [M ] with nm,q ≥ Cb(ln(MT ) + d ln(L ln(K)/µ)).

Proof. For 0 ≤ q < Q and m ∈ [M ], we let T (m)
q be the set of times when contexts Xm

q

are observed at instance m, i.e., Xm
q = (x

(m)

t,a
(m)
t

)⊤
t∈T (m)

q

. Clearly, we have |T (m)
q | = nm,q; and

further {x(m)

t,a
(m)
t

: t ∈ T (m)
q } are independent, conditioned on β̂

(m)
q−1. The following analysis is

conditional on {T (m)
q }m∈[M ] and therefore on {nm,q}m∈[M ].

We first prove an upper bound on λmax(X
(m)⊤
q X

(m)
q /nm,q). For any t ∈ [T ], a ∈ [K],

m ∈ [M ] and any source vector v ∈ Rd, let Z(m)
t,a = ⟨v, xt,a⟩2. Conditioned on β̂

(m)
q−1, for any

δ > 0 and λ > 0, we have

P

 ∑
t∈T (m)

q

Z
(m)

t,a
(m)
t

≥ nm,qδ | β̂(m)
q−1

 ≤ e−λnm,qδE

exp
λ ∑

t∈T (m)
q

Z
(m)

t,a
(m)
t

 | β̂(m)
q−1


=e−λnm,qδ

∏
t∈T (m)

q

E
[
exp

(
λZ

(m)

t,a
(m)
t

)
| β̂(m)

q−1

]
≤ e−λnm,qδ

∏
t∈T (m)

q

∑
a∈[K]

E
[
exp

(
λZ

(m)
t,a

)]
.

Taking the expectation with respect to β̂(m)
q−1, we obtain

P

 ∑
t∈T (m)

q

Z
(m)

t,a
(m)
t

≥ nm,qδ

 ≤ e−λnm,qδ
∏

t∈T (m)
q

∑
a∈[K]

E
[
exp

(
λZ

(m)
t,a

)]
. (H.1)

Since x(m)
t,a is assumed to be L-sub-Gaussian and ∥v∥2 = 1, ⟨v, xt,a⟩ is also L-sub-Gaussian.

As a result, Z(m)
t,a = ⟨v, x(m)

t,a ⟩2 is (4
√
2L, 4L)-sub-exponential (Vershynin, 2018). By the sub-

Gaussianity of ⟨v, x(m)
t,a ⟩, using Lemma B.9, we have E[Z(m)

t,a ] = E[⟨v, x(m)
t,a ⟩2] ≤ 2L(ln(2) +

1). Applying Bernstein’s concentration inequality for sub-exponential variables, for δ ≥
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2L(ln(2) + 1) ≥ E[Z(m)
t,a ] we have

e−λδE
[
exp

(
λZ

(m)
t,a

)]
≤e−λ(δ−E[Z(m)

t,a ])E
[
exp

(
λ(Zt,a − E[Z(m)

t,a ])
)]

≤ exp

(
−min

{
(δ − E[Z(m)

t,a ])2

64L
,
δ − E[Z(m)

t,a ]

32L

})

≤ exp

(
−min

{
(δ − 2L(ln(2) + 1))2

64L
,
δ − 2L(ln(2) + 1)

32L

})
. (H.2)

Combining (H.2) with (H.1), we obtain for δ ≥ 2L(ln(2) + 1),

P
(
v⊤(X(m)⊤

q X(m)
q /nm,q)v ≥ δ

)
= P

 ∑
t∈T (m)

q

Z
(m)

t,a
(m)
t

≥ nm,qδ


≤ exp

(
−
(
min

{
(δ − 2L(ln(2) + 1))2

64L
,
δ − 2L(ln(2) + 1)

32L

}
+ ln(K)

)
nm,q

)
≜ p

(m)
q,δ . (H.3)

Now, we consider an ε-net Nd(ε) of the source ball Bd with cardinality at most (1+2/ε)d

(Vershynin, 2018, Corollary 4.2.13). By applying a union bound to (H.3), we have with
probability at least 1 − (1 + 2/ε)d

∑
m∈Cq p

(m)
q,δ that v⊤(X(m)⊤

q X
(m)
q /nm,q)v ≤ δ holds for

any v ∈ Nd(ε) and m ∈ Cq. Now taking any source vector u ∈ Rd, there exists v ∈
Nd(ε) such that ∥u − v∥2 ≤ ε. Furthermore, by symmetry of (X(m)⊤

q X
(m)
q /nm,q), we have

u⊤(X
(m)⊤
q X

(m)
q /nm,q)v = v⊤(X

(m)⊤
q X

(m)
q /nm,q)u and thus

u⊤(X(m)⊤
q X(m)

q /nm,q)u− v⊤(X(m)⊤
q X(m)

q /nm,q)v = (u+ v)⊤(X(m)⊤
q X(m)

q /nm,q)(u− v)
≤ε
∥∥(X(m)⊤

q X(m)
q /nm,q

)
(u+ v)

∥∥
2
≤ 2ελmax

(
X(m)⊤

q X(m)
q /nm,q

)
.

Rearranging the above inequality gives

u⊤(X(m)⊤
q X(m)

q /nm,q)u ≤ 2ελmax

(
X(m)⊤

q X(m)
q /nm,q

)
+ δ.

Taking the supremum with respect to u, we obtain

λmax

(
X(m)⊤

q X(m)
q /nm,q

)
≤ δ

1− 2ε
. (H.4)

Next we bound λmin(X
(m)⊤
q X

(m)
q /nm,q). For any source vector v ∈ Rd, we have

v⊤(X(m)⊤
q X(m)

q /nm,q)v = v⊤

 1

nm,q

∑
t∈T (m)

q

xm
t,a

(m)
t

xm⊤
t,a

(m)
t

 v ≥ µ

nm,q

∑
t∈T (m)

q

1(⟨v, x(m)

t,a
(m)
t

⟩2 ≥ µ).

Since a(m)
t = argmaxa∈[K]⟨β̂(m)

q−1, x
(m)
t,a ⟩ for any t ∈ T (m)

q and m ∈ [M ], by Condition 9, we
have

E[1(⟨v, x(m)

t,a
(m)
t

⟩2 ≥ µ)] = P(⟨v, x(m)

t,a
(m)
t

⟩2 ≥ µ) ≥ cx.
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Therefore, by applying the Chernoff bound, we have

P
(
v⊤(X(m)⊤

q X(m)
q /nm,q)v ≤ µcx/2

)
≤ e−cxnm,q/8 ≜ p̃(m)

q . (H.5)

By applying a union bound to (H.5), we have with probability at least 1−(1+2/ε)d
∑

m∈Cq p̃
(m)
q

that v⊤(X(m)⊤
q X

(m)
q /nm,q)v ≥ µcx/2 holds for any v ∈ Nd(ε) and m ∈ Cq. Taking any source

vector u ∈ Rd, there exists v ∈ Nd(ε) such that ∥u−v∥2 ≤ ε. Furthermore, by the symmetry
of X(m)⊤

q X
(m)
q /nm,q, we have

u⊤(X(m)⊤
q X(m)

q /nm,q)u− v⊤(X(m)⊤
q X(m)

q /nm,q)v = (u+ v)⊤(X(m)⊤
q X(m)

q /nm,q)(u− v)
≥− ε

∥∥(X(m)⊤
q X(m)

q /nm,q

)
(u+ v)

∥∥
2
≥ −2ελmax

(
X(m)⊤

q X(m)
q /nm,q

)
.

Rearranging the above inequality, we obtain

u⊤(X(m)⊤
q X(m)

q /nm,q)u ≥
µcx
2
− 2ελmax

(
X(m)⊤

q X(m)
q /nm,q

)
. (H.6)

Taking the infimum in (H.6) with respect to u and using (H.4), we obtain

λmin

(
X(m)⊤

q X(m)
q /nm,q

)
≥ µcx

2
− 2εδ

1− 2ε
. (H.7)

Finally, letting δ = 32max{L,
√
L}(ln(K) + 1) and ε = µcx/(8δ + 2µcx), we have 2εδ/(1 −

2ε) = µcx/4 and p
(m)
q,δ ≤ e−nm,q ≤ e−cxnm,q/8 = p̃

(m)
q . Therefore, λmin

(
X

(m)⊤
q X

(m)
q /nm,q

)
≥

µcx/4 holds for all m ∈ Cq with a probability of at least

1− (1 + 2/ε)d
∑
m∈Cq

(p̃(m)
q + p

(m)
q,δ ) ≥ 1− 2(1 + 2/ε)d

∑
m∈Cq

e−cxnm,q/8

=1− 2
(
5 + 512max{L,

√
L}(ln(K) + 1)/(µcx)

)d ∑
m∈Cq

e−cxnm,q/8

≥1− exp

(
−
cxminm∈Cq nm,q

8
+ ln(2M) + d ln

(
5 + 512max{L,

√
L}(ln(K) + 1)/(µcx)

))
.

In particular, there exists Cb ≥ 2 depending only on cx, such that when minm∈Cq nm,q ≥
Cb(ln(MT ) + d ln(L ln(K)/µ)), the probability is lower bounded bounded by 1− 1/T .

H.2 Proof of Lemma 1

Proof. Since nm,0 =
∑

t∈H0
1(m ∈ St) and nm,q = nm,q−11{m /∈ Cq−1}+

∑
t∈Hq

1(m ∈ St) ≥∑
t∈Hq

1(∈ St) for any 1 ≤ q < Q, by using Bernstein’s inequality (B.1), we have for each
m ∈ [τ ],

P
(
nm,q <

pm|Hq|
2

)
≤ exp

(
− |Hq|p2m
2(pm(1− pm) + pm/2)

)
≤ exp (−|Hq|pm/3) ≤

1

2MT
, (H.8)
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where the last inequality holds because Cb ≥ 2 and thus |Hq| ≥ 2Cb ln(MT )/pτ ≥ 3 ln(2MT )/pτ .
Similarly, we have P (nm,q > 3pm|Hq|/2) ≥ 1/(2MT ) for all m ∈ [τ ]. For each 0 ≤ q < Q,
define the event

Fq ≜ {pm|Hq|/2 ≤ nm,q ≤ 3pm|Hq|/2 for all m ∈ [τ ]}.

Using (H.8) and applying the union bound over all m ∈ [τ ], we have P(Fq) ≥ 1 − 1/T .
Furthermore, by the condition on |Hq|, we have for all m ∈ [τ ] that

pm|Hq|/2 ≥ Cb(ln(MT ) + d ln(L ln(K)/µ).

Therefore, on the event Fq, we have [τ ] ⊆ Cq, with Cq from (6). For each 0 ≤ q < Q, define
the event

Eq ≜
{
λmin(X

(m)⊤
q Xm

q ) ≥ nm,qµcx/4 for all m ∈ Cq
}
.

By Lemma H.1, we have P(Eq) ≥ 1−1/T . On the event Eq∩Fq, which holds with probability
at least 1− 2/T , using Condition 6, we have

min
1≤m≤|Cq |

n1,q ∨ (nCq ,q/m)

nm,q

≤6 min
1≤m≤|Cq |

p1 ∨ (pCq/m)

pm
≤ 6cf = Õ(1).

Therefore, by applying Theorem 1 with p = 2 and using definition of Eq, we have for any
m ∈ Cq that

E
[
∥β̂m

q − β(m)∥22 | (X(m)
q , Y (m)

q )m∈Cq

]
=Õ

(
1

µ

(
s

nm,q

+
d

nCq ,q

))
. (H.9)

Since event Fq implies nm,q ≥ pm|Hq|/2 and [τ ] ⊆ Cq for all m ∈ Cq, we thus have, using the
definition of τ ,

nCq ,q ≥ n[τ ],q ≥ |Hq|τpτ/2 = Õ
(
|Hq|p[M ]

)
. (H.10)

Plugging (H.10) into (H.9), we reach the conclusion.

H.3 Proof of Theorem 3

Proof. For any t ∈ Hq, 0 ≤ q ≤ Q, and m ∈ [M ], it holds that

max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St) ≤ max
a∈[K],a′∈[K]

⟨x(m)
t,a − x

(m)
t,a′ , β

(m)⟩1(m ∈ St)

=

(
max
a∈[K]
⟨x(m)

t,a , β
(m)⟩+ max

a′∈[K]
|⟨x(m)

t,a′ , β
(m)⟩|

)
1(m ∈ St) ≤ 2 max

a∈[K]
|⟨x(m)

t,a , β
(m)⟩|1(m ∈ St).

(H.11)

Also, by the definition of a(m)
t , the instantaneous regret can be bounded as

max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St) ≤ max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m) − β̂m
q−1⟩1(m ∈ St)

≤ max
a∈[K],a′∈[K]

⟨x(m)
t,a − x

(m)
t,a′ , β

(m) − β̂m
q−1⟩1(m ∈ St) ≤ 2 max

a∈[K]
|⟨x(m)

t,a , β
(m) − β̂m

q−1⟩|1(m ∈ St).

(H.12)
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Combinig (H.11) with (H.12), we obtain, for m ∈ St,

max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩ ≤ 2

(
max
a∈[K]

|⟨x(m)
t,a , β

(m)⟩|
)
∧
(
max
a∈[K]

|⟨x(m)
t,a , β

(m) − β̂m
q−1⟩|

)
(H.13)

Taking the expectation of (H.13) multiplied by 1(m ∈ St), conditioned on β̂(m)
q−1, by Condition

8 and Lemma B.2, we have

E
[
max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St) | β̂m
q−1

]
≤2
(
∥β(m)∥2 ∧ ∥β(m) − β̂m

q−1∥2
)√

2 ln(2K)L · P(m ∈ St)

≤2pm
(
1 ∧ ∥β(m) − β̂m

q−1∥2
)√

2 ln(2K)L. (H.14)

Taking expectations in (H.14) with respect to β̂(m)
q−1, we find

E
[
max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St)
]
≤ 2
√

2 ln(2K)Lpm

(
E[1 ∧ ∥β̂m

q−1 − β(m)∥2]
)
.

(H.15)
Given (H.15), the remaining key step is to bound the estimation error E[∥β̂m

q−1 − β(m)∥2] for
all 0 ≤ q ≤ Q and m ∈ [M ]. Letting Q̃ = ⌈log2(Cb(ln(MT ) + d ln(L ln(K)/µ))/(H0pτ )⌉+ 3

with Cb defined in Lemma H.1, we first bound E[∥β̂m
q−1 − β(m)∥2] for m ∈ [τ ].

Case 1. When 0 ≤ q < Q̃, using 1 ∧ ∥β̂m
q−1 − β(m)∥2 ≤ 1 in (H.15), we have

∑
t∈Hq

E
[
max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St)
]
= Õ(pm|Hq|

√
L). (H.16)

Case 2. When Q̃ ≤ q ≤ Q, we have by the definition of Q̃,

|Hq−1| = 2q−2H0 ≥ 2Cb(ln(MT ) + d ln(L ln(K)/µ))/pτ .

Let Gq−1 be the event that [τ ] ⊆ Cq−1, with Cq−1 from (6). From Theorem 1 with p = 2, it
follows for all m ∈ Cq−1 that

E[1 ∧ ∥β̂(m)
q−1 − β(m)∥22 | (X

(m)
q−1, Y

(m)
q−1 )m∈Cq−1 ] = Õ

(
1

µ|Hq−1|

(
s

pm
+

d

p[M ]

))
.

Following the argument from Lemma 1, we know P(Gq−1) ≥ 1 − 2/T . Marginalizing over
(X

(m)
q−1, Y

(m)
q−1 )m∈Cq−1 and using Jensen’s inequality, we have for any m ∈ [τ ] that

E[1 ∧ ∥β̂(m)
q−1 − β(m)∥2] = Õ

(
1√

µ|Hq−1|

√
s

pm
+

d

p[M ]

+
1

T

)
(H.17)
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where 1/T appears by considering the complement of Gq−1, via the bound 1∧∥β̂(m)
q−1−β(m)∥2 ≤

2. Plugging (H.17) into (H.15), we obtain∑
t∈Hq

E
[
max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St)
]

=Õ

(
|Hq|pm

(√
L

µ|Hq−1|

(
s

pm
+

d

p[M ]

)
+

√
L

T

))

=Õ

(√
L|Hq|(pm)2

µ

(
s

pm
+

d

p[M ]

)
+

√
L|Hq|pm
T

)
, (H.18)

where the last equation holds because |Hq| ≤ 2|Hq−1|. Combining the bounds (H.18) with
(H.16) for the two cases, we obtain for each m ∈ [τ ] that

E[R(m)
T ] =

T∑
t=1

E
[
max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St)
]

=

Q̃−1∑
q=0

+

Q∑
q=Q̃

∑
t∈Hq

E
[
max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St)
]

=Õ

√Lpm Q̃−1∑
q=0

|Hq|+
Q∑

q=Q̃

(√
L|Hq|(pm)2

µ

(
s

pm
+

d

p[M ]

)
+

√
L|Hq|pm
T

) .

(H.19)

By direct calculation, we have
∑Q

q=Q̃
|Hq|/T ≤ 1, while

Q̃−1∑
q=0

|Hq| = O(2Q̃H0) = O(Cb(ln(MT ) + d ln(L ln(K)/µ))/(H0pτ )×H0) = Õ(d/pτ ),

and
Q∑

q=Q̃

√
|Hq| = O

 Q∑
q=Q̃

2q/2
√
H0

 = O
(
2Q/2

√
H0

)
= O

(√
T
)
.

Therefore, from (H.19), we obtain

E[R(m)
T ] =Õ

(
√
Ldpm/pτ +

√
L

µ

(
s+

dpm
p[M ]

)
Tpm

)

=Õ

(
√
Ld+

√
L

µ

(
s+

dpm
p[M ]

)
Tpm

)
,

where the second equation is due to pm/pτ ≤ cf = Õ(1).
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Next we bound the estimation errors for m /∈ [τ ], and thus also the regret. Let Qm =
(⌈log2(Cb(ln(MT ) + d ln(L ln(K)/µ))/(H0p

m)⌉+ 3)∧Q for each m /∈ [τ ]. If pm is sufficiently
small such that Qm = Q, then we have Tpm ≤ 4|HQ−1|pm = Õ(d), which, combined with
(H.15), directly implies

T∑
t=1

E
[
max
a∈[K]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β(m)⟩1(m ∈ St)
]
= O

(√
LTpm

)
= O

(√
L · d ∧ (Tpm)

)
.

Otherwise ifQm < Q, Tpm = Ω̃(d). In this case, we show thatm ∈ Cq−1 with high probability
for q ≥ Qm. Using n(m)

q−1 ≥
∑

t∈Hq−1
1(m ∈ St) for any q ∈ [Q] and Bernstein’s inequality

(B.1), we have for each m ∈ [τ ],

P
(
n
(m)
q−1 <

pm|Hq−1|
2

)
≤ exp (−|Hq−1|pm/3) ≤

1

MT
.

Letting F (m)
q−1 = {nm,q−1 ≥ pm|Hq−1|/2}, we have P(F (m)

q−1) ≥ 1 − 1/(MT ) and furthermore
F (m)

q−1 implies m ∈ Cq−1. Following the arguments in (H.17), (H.18), we similarly have that for

any q ≥ Qm, E
[
1 ∧ ∥β̂m

q−1 − β(m)∥2
]

is bounded by (H.18). Therefore, using
∑Q(m)−1

q=0 |Hq| =

Õ(d/pm) and
∑Q

q=Qm

√
|Hq| = O(

√
T ), we can proceed as in (H.19), and then bound

√
L

Qm−1∑
q=0

pm|Hq| = Õ(
√
L · d ∧ (Tpm)).

to reach the desired conclusion.

H.4 Proof of Theorem 4

Proof. The proof strategy for the term Ω(
√
(s+ dpm/p[M ])Tpm) is similar to Theorem 2:

we prove Ω(
√
sTpm) and Ω(

√
dTpm/p[M ]) by considering two cases: the homogeneous case

where β(1) = · · · = β(M) = β⋆ and the s-sparse case where β⋆ = 0 and ∥β(m)∥0 ≤ s for all
m ∈ [M ].

The homogeneous case. The lower bound of Ω(
√
dT ) for a single linear contextual

bandit is proved in (Han et al., 2020; Chu et al., 2011). We will follow a similar method to
prove the risk is bounded as Ω(

√
dTp2m/p[M ]). Since β(1) = · · · = β(M) = β⋆ in this case, we

omit the superscript m in β(m) for simplicity.
We consider a 2-armed instance, i.e., K = 2. Denote by Q the uniform distribution

over {β ∈ Rd : ∥β∥2 = ∆} where ∆ ∈ [0, 1] will be specified later. We let Q be the prior
distribution for β, and let D ≜ N (0, L · Id) be the distribution of contexts. By (Ren and
Zhou, 2023, Lemma 1), this choice of context distribution satisfies Conditions 8 and 9 with
cx = Θ(1).

Let St be the set of activated bandits at the t-th round and denote by Pβ,x,t the dis-
tribution of the observed rewards {{y(m)

ℓ 1(m ∈ Sℓ)}Mm=1}tℓ=1 up to time t, conditioned on
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parameter β and contexts {x(m)
ℓ,a : a ∈ [2],m ∈ [M ]}tℓ=1. Since the event {m ∈ St} is in-

dependent of the history and of the contexts {x(m)
t,a : a ∈ [2]} at the current round, we

have

sup
β

E[R(m)
T (A)] ≥Eβ∼Q[R

(m)
T (A)] =

T∑
t=1

EQ

[
ED

[
EPβ,x,t−1

[
pm max

a∈[2]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β⟩
]]]
(H.20)

where the factor of pm in (H.20) is due to the integration over the randomness of {m ∈ St}.
Letting d(m)

t ≜ x
(m)
t,2 − x

(m)
t,1 for all m ∈ [M ] and t ≥ 1, we have

max
a∈[2]
⟨x(m)

t,a − x
(m)

t,a
(m)
t

, β⟩ = 1(a
(m)
t = 1)⟨d(m)

t , β⟩+ + 1(a
(m)
t = 2)⟨d(m)

t , β⟩−

where the subscripts + and − denote the positive and negative part respectively, i.e., u+ =
max{u, 0} and u− = max{−u, 0} for any u ∈ R. Therefore, from (H.20), we have

sup
β

E[R(m)
T (A)] ≥pm

T∑
t=1

EQ

[
ED

[
EPβ,x,t−1

[
1(a

(m)
t = 1)⟨d(m)

t , β⟩+ + 1(a
(m)
t = 2)⟨d(m)

t , β⟩−
]]]

.

(H.21)

For any 1 ≤ t ≤ T , conditioned on d(m)
t , we define two new measuresQ(m)+

t andQ(m)−
t over Rd

via the Radon–Nikodym derivatives dQ
(m)+
t (β) = ⟨d(m)

t , β⟩+/Z(d(m)
t )dQ and dQ

(m)−
t (β) =

⟨d(m)
t , β⟩−/Z(d(m)

t )dQ, for all β ∈ Rd, where Z(d(m)
t ) = EQ[⟨d(m)

t , β⟩+] = EQ[⟨d(m)
t , β⟩−] is

a normalization factor. Here EQ[⟨d(m)
t , β⟩+] = EQ[⟨d(m)

t , β⟩−] due to the symmetry of Q.
Plugging the definitions of Q(m)+

t and Q(m)−
t into (H.21), and changing the integration order,

we have

sup
β

E[R(m)
T (A)] ≥pm

T∑
t=1

ED

[
Z(d

(m)
t )

(
E

Pβ,x,t−1◦Q
(m)+
t

[1(at = 1)] + E
Pβ,x,t−1◦Q

(m)−
t

[1(at = 2)]
)]

≥pm
T∑
t=1

ED

[
Z(d

(m)
t )

(
1− TV(Pβ,x,t−1 ◦Q(m)+

t , Pβ,x,t−1 ◦Q(m)−
t )

)]
≥pm

T∑
t=1

ED

[
Z(d

(m)
t )

(
1−

√
1

2
DKL(Pβ,x,t−1 ◦Q(m)+

t ∥Pβ,x,t−1 ◦Q(m)−
t )

)]
,

(H.22)

where the second inequality follows the definition of the total variation distance: P1(A) +
P2(A

c) ≥ 1− TV(P1, P2) with A = {at = 1}, and the third inequality follows from Pinsker’s
inequality TV(P1, P2) ≤

√
DKL(P1 ∥P2)/2.

Due to the distribution of the contexts, d(m)
t ̸= 0 with probability one. Hence we can let

u
(m)
t = d

(m)
t /∥d(m)

t ∥2 if d(m)
t ̸= 0; and the zero-probability set where d(m)

t = 0 does not affect
the result. Further, let

β̃m
t = β − 2⟨u(m)

t , β⟩u(m)
t . (H.23)
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Since ⟨d(m)
t , β̃m

t ⟩ = −⟨d
(m)
t , β̃m

t ⟩, we have ⟨d(m)
t , β⟩− = ⟨d(m)

t , β̃m
t ⟩+. Furthermore, (H.23) has

the inverse transformation
β = β̃m

t − 2⟨u(m)
t , β̃m

t ⟩u
(m)
t . (H.24)

Since ⟨d(m)
t , β⟩− = ⟨d(m)

t , β̃m
t ⟩+ and Q is reflection-invariant, one can equivalently obtain

β ∼ Q
(m)−
t by first generating β̃

(m)
t ∼ Q

(m)+
t and then calculating β via (H.24). Since

Pβ,x,t−1 ◦ Q(m)−
t means drawing β from Q

(m)−
t first and then gaining rewards given such β

and the independently sampled contexts, it thus holds that

Pβ,x,t−1 ◦ (β ∼ Q
(m)−
t ) =P

β̃
(m)
t −2⟨u(m)

t ,β̃
(m)
t ⟩u(m)

t ,x,t−1
◦ (β̃(m)

t ∼ Q
(m)+
t )

d
=P

β−2⟨u(m)
t ,β⟩u(m)

t ,x,t−1
◦ (β ∼ Q

(m)+
t ).

In the second equation above we changed the notation from β̃
(m)
t 7→ β. From this and (H.22),

we have

sup
β

E[R(m)
T (A)]

≥pm
T∑
t=1

ED

[
Z(d

(m)
t )

(
1−

√
1

2
DKL(Pβ,x,t−1 ◦Q(m)+

t ∥P
β−2⟨u(m)

t ,β⟩u(m)
t ,x,t−1

◦Q(m)+
t

)]
.

By Lemma B.7, this is lower bounded by

pm

T∑
t=1

ED

[
Z(d

(m)
t )

(
1−

√
1

2
E

β∼Q
(m)+
t

[
DKL(Pβ,x,t−1 ∥Pβ−2⟨u(m)

t ,β⟩u(m)
t ,x,t−1

)
])]

. (H.25)

Since the reward noise follows a N (0, 1) distribution, conditioned on the activation sets
{Sℓ}t−1

ℓ=1, we have Pβ,x,t−1 = ⊗t−1
ℓ=1⊗r∈Sℓ

N (⟨β, x(r)
ℓ,a

(r)
ℓ

⟩, 1). Furthermore, by the formula for the
Kullback-Leibler divergence between two Gaussian distributions, we have

DKL

(
Pβ,x,t−1 ∥Pβ−2⟨u(m)

t ,β⟩u(m)
t ,x,t−1

| {Sℓ}t−1
ℓ=1

)
=
1

2

t−1∑
ℓ=1

∑
r∈Sℓ

(
⟨β, x(r)

ℓ,a
(r)
ℓ

⟩ −
〈
β − 2⟨u(m)

t , β⟩u(m)
t , x

(r)

ℓ,a
(r)
ℓ

〉)2

=2⟨u(m)
t , β⟩2

t−1∑
ℓ=1

∑
r∈Sℓ

⟨u(m)
t , x

(r)

ℓ,a
(r)
ℓ

⟩2 = 2⟨u(m)
t , β⟩2

t−1∑
ℓ=1

M∑
r=1

〈
u
(m)
t , x

(r)

ℓ,a
(r)
ℓ

〉2

1(r ∈ Sℓ). (H.26)

Since the events {r ∈ Sℓ} for ℓ ∈ [t − 1] and r ∈ [M ] are independent of contexts and the
variable β, using (H.26) and Lemma B.7, we obtain

DKL(Pβ,x,t−1 ∥Pβ−2⟨u(m)
t ,β⟩u(m)

t ,x,t−1
)

≤E{Sℓ}t−1
ℓ=1

[
DKL

(
Pβ,x,t−1 ∥Pβ−2⟨u(m)

t ,β⟩u(m)
t ,x,t−1

| {Sℓ}t−1
ℓ=1

)]
=2⟨u(m)

t , β⟩2
t−1∑
ℓ=1

∑
r∈[M ]

⟨u(m)
t , x

(r)

ℓ,a
(r)
ℓ

⟩2P(r ∈ Sℓ) = 2⟨u(m)
t , β⟩2p[M ]

t−1∑
ℓ=1

⟨u(m)
t , x

(r)

ℓ,a
(r)
ℓ

⟩2. (H.27)
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Therefore, combining (H.25) and (H.27), we have

sup
β

E[R(m)
T (A)] (H.28)

≥pm
T∑
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ED

Z(d(m)
t )

1−

√√√√E
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t
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t , β⟩2]um⊤

t

(
p[M ]

t−1∑
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x
(r)

ℓ,a
(r)
ℓ

x
(r)⊤
ℓ,a

(r)
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)
umt


≥pm

T∑
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ED

Z(d(m)
t )

1−

√√√√p[M ]EQ
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[⟨u(m)
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(
x
(r)
ℓ,1x

(r)⊤
ℓ,1 + x

(r)
ℓ,2x

(r)⊤
ℓ,2

)
u
(m)
t

 .
(H.29)

Taking the expectation of (H.29) with respect to {(xrℓ,1, xrℓ,2) : r ∈ [M ]}t−1
ℓ=1, each of which is

distributed i.i.d. according to D = N (0, L·Id×d), and using that ∥u(m)
t ∥2 = 1 with probability

one, we have that the above is lower bounded by

pm

T∑
t=1

E
(x

(m)
t,1 ,x

(m)
t,2 )

[
Z(d

(m)
t )

(
1−

√
2(t− 1)Lp[M ]EQ

(m)+
t

[⟨u(m)
t , β⟩2]

)]
, (H.30)

where the outer expectation is only over the randomness of (x(m)
t,1 , x

(m)
t,2 ). We next calculate

EQ+
t
[⟨ut, β⟩2] and Z(d(m)

t ). By the definition of Q+
t , we have

E
Q

(m)+
t

[⟨u(m)
t , β⟩2] =

EQ

[
|⟨u(m)

t , β⟩|3
]

EQ

[
|⟨u(m)

t , β⟩|
] . (H.31)

By the symmetry of Q, the distribution of ⟨u(m)
t , β⟩, conditioned on any u(m)

t , is identical to
that of the first coordinate of β. Therefore, using Lemma B.8, we have

EQ

[
|⟨u(m)

t , β⟩|3
]
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2
)Γ(2)
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2
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2
)
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[
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]
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Γ(d
2
)Γ(1)

Γ(d+1
2
)Γ(1

2
)
,

and thus it follows from (H.31) that

E
Q

(m)+
t

[⟨u(m)
t , β⟩2] = 2∆2

d+ 1
. (H.32)

Similarly, we have

E
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E
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] ∆Γ(d
2
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2
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π
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√
L∆). (H.33)

Combining (H.30), (H.32), and (H.33), we have

sup
β

E[R(m)
T (A)] ≥Ω(pm

√
L∆T ) ·

(
1−

√
4(t− 1)L∆2

(d+ 1)
p[M ]

)
. (H.34)
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Choosing ∆ =

√
(d+1)

4
√

(T−1)L
∑

r∈[M ] pr
, which satisfies ∆ ≤ 1 by assumption, in (H.34), we finally

establish
sup
β

E[RT (A)] = Ω
(
pmT
√
L∆
)
= Ω

(√
dTp2m/p[M ]

)
.

The s-sparse case. In this case, we consider supp(β(1)), . . . , supp(β(M)) located in the
first s coordinates. If the supports of {β(m)}m∈[M ] are known to the algorithm, then the
structure of sparse heterogeneity and the common β⋆ would be non-informative for estimating
{β(m)}m∈[M ]. Therefore, in this case, one can obtain the lower bound Ω(

√
sTpm) by simply

adapting the proof for the homogeneous case with M = 1 in s dimensions.
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I Results on Contextual Bandits under Model-P

Recall that in the single contextual bandit problem under Model-P, we have a set of K
parameters {β(a)}a∈[K] where β(a) is associated with arm a. When action a is chosen, a
reward yt,a = ⟨xt, β(a)⟩+ εt is earned. We extend this to a multitask scenario as follows. We
consider M bandit instances, and each bandit m is associated with K arms corresponding
to parameters {β(m,a)}a∈[K] ⊆ Rd, and an activation probability pm ∈ [0, 1]. At any time
t, each bandit m is independently activated with probability pm. The analyst observes an
independent d-dimensional context x(m)

t for m in the set St of activated bandit instances.
Given all observed contexts, the analyst can select action a

(m)
t ∈ [K] for each activated

bandit instance m ∈ St and earn the reward via y(m)
t = ⟨x(m)

t , β(m,a
(m)
t )⟩ + ε

(m)
t ∈ R, where

ε
(m)
t are i.i.d. noise random variables.

To study the proposed multitask scenario under Model-P, we impose the following con-
ditions, which are parallel to Conditions 5, 8, and 9.

Condition I.1 (Sparse heterogeneity & Boundedness). There is sa with 0 ≤ sa ≤ d
such that for each action a ∈ [K], there is an unknown global parameter β⋆,(a) ∈ Rd with
∥β(m,a) − β⋆,(a)∥0 ≤ s for any m ∈ [M ]. Furthermore, ∥β(m,a)∥2 ≤ 1 for all a ∈ [K] and
m ∈ [M ].

Condition I.2 (Sub-Gaussianity). For each t ∈ [T ], the marginal distribution of xt is
L-sub-Gaussian.

Condition I.3 (Diverse covariate). There are positive constants µ and cx, such that
for any {β(m,a) : a ∈ [K]} ⊆ Rd, source vector v ∈ Rd, and m ∈ [M ] , it holds that
P(⟨x(m)

t , v⟩21(a⋆ = a) ≥ µ) ≥ cx where a⋆ = argmaxa∈[K]⟨x
(m)
t , β(m,a)⟩ and the probability

P(·) is taken over the distribution of x(m)
t .

Remark I.1. Condition I.3 ensures sufficient exploration even with a greedy algorithm.
(Ren and Zhou, 2023, Lemma 14) proves that Condition I.3 holds when E[xtx⊤t ] ⪰ 2µId and
p(xt) ≥ νp(−xt) for some ν > 0 where p(·) is the density of xt.
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I.1 Algorithm & Regret Analysis

Algorithm 3 MOALRBandit: Collaborative Bandits with MOLAR estimates under Model-
P

Input: Time horizon T , β̂(m)
a,−1 = 0 for a ∈ [K] and m ∈ [M ], initial batch size H0 and

batch H0 = [H0]; number of batches Q = ⌈log2(T/H0)⌉, X(m,a)
q = ∅, and Y

(m)
a,q = ∅ for

a ∈ [K], m ∈ [M ], and 0 ≤ q ≤ Q
for q = 1, . . . , Q do

Define batch Hq = {t : 2q−1H0 < t ≤ min{2qH0, T}}
end for
for t = 1, · · · , T do

for each bandit in parallel do
Bandit instance m is activated with probability pm
if t ∈ Hq and bandit instance m is activated then

Choose, breaking ties randomly a(m)
t = argmaxa∈[K]⟨x(m)

t , β̂
(m,a)
q−1 ⟩, and gain reward

y
(m)
t

Augment observations X
(m,a

(m)
t )

q ← [X
(m,a

(m)
t )⊤

q , x
(m)
t ]⊤ and Y

(m,a
(m)
t )

q ←
[Y

(m,a
(m)
t )⊤

q , y
(m)
t ]⊤

end if
end for
if t = 2qH0, i.e., batch Hq ends then

Let nm,q =
∑

a∈[K] |Y
(m,a)
q | and Cq = {m ∈ [M ] : nm,q ≥ C ′

b(ln(MKT ) + d ln(L/µ))}
with C ′

b defined in Lemma I.1
for a ∈ [K] do

Call MOLAR({(X(m,a)
q , Y

(m,a)
q )}m∈Cq) to obtain {β̂(m,a)

q }m∈Cq

for m ∈ [M ]\Ca,q do

Let β̂(m,a)
q = β̂

(m,a)
q−1 , X(m,a)

q+1 = X
(m,a)
q , and Y (m,a)

q+1 = Y
(m,a)
q

end for
end for

end if
end for

Algorithm 3 describes a variant of the MOLARB algorithm under Model-P. While Algo-
rithm 3 follows the spirit of MOLARB, the difference is that it requires applying MOLAR
to all arms with the same index across all bandits due to the nature of Model-P.

We consider the following individual regret metric: given a time horizon T ≥ 1 and a
specific algorithm A that produces action trajectories {a(m)

t }t∈[T ],m∈[M ], we define for each
m ∈ [M ] that

R
(m)
T (A) :=

T∑
t=1

max
a∈[K]
⟨x(m)

t , β(m,a) − β(m,a
(m)
t )⟩1(m ∈ St).
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Theorem I.1 establishes a corresponding regret upper bound under Conditions 6, 7, and
I.1-I.3. To this end, we first show Lemma I.1, which guarantees that for any given a ∈ [K]

and 0 ≤ q < Q, the contexts X (m)
a,q at the end of each batch for all m ∈ [M ] has lower

bounded eigenvalues with high probability. Lemma I.1 is similar to (Ren and Zhou, 2023,
Lemma 18) in the single-bandit and s-sparse regime.

Lemma I.1. Under Conditions I.2 and I.3, there is C ′
b only depending on cx, such that for

any 0 ≤ q < Q, it holds with probability at least 1−1/T that λmin(X
(m,a)⊤
q X

(m,a)
q ) ≥ nm,qµcx/4

for all a ∈ [K] and m ∈ [M ] with nm,q ≥ C ′
b(ln(MKT ) + d ln(L/µ)).

Proof. The proof is similar to the proof of Lemma H.1. Hence we only sketch the key steps
below. For 0 ≤ q < Q and m ∈ [M ], we let T (m)

q be the set of times when contexts Xm
q are

observed at instance m. Clearly, we have |T (m)
q | = nm,q; and {x(m)

t : t ∈ T (m)
q } are indepen-

dent, conditioned on {β̂(m,a)
q−1 }a∈[K]. The following analysis is conditional on {T (m)

q }m∈[M ] and
therefore also on {nm,q}m∈[M ].

By definition, we have for any a ∈ [K] and m ∈ [M ],

X(m,a)⊤
q X(m,a)

q =
∑

t∈T (m)
q

x
(m)
t x

(m)⊤
t 1(a

(m)
t = a).

We first give an upper bound for λmax(X
(m,a)⊤
q X

(m,a)
q /nm,q). For any source vector v ∈ Rd,

any t ∈ [T ], a ∈ [K], and m ∈ [M ], let Z(m)
t,a = ⟨v, xt⟩21(a(m)

t = a). Conditionally on
{β̂(m,a)

q−1 }a∈[K], for any δ > 0 and λ > 0, we have

P

 ∑
t∈T (m)

q
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)
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]
.

Since xt is assumed to be L-sub-Gaussian and ∥v∥2 = 1, Z(m)
t,a = ⟨v, xt⟩21(a(m)

t = a) ≤ ⟨v, xt⟩2

is (4
√
2L, 4L)-sub-exponential (Vershynin, 2018). Following the argument in (H.1) and (H.2),

we obtain

P
(
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q /nm,q)v ≥ δ

)
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32L

}
nm,q

)
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(m)
q,δ

for any δ ≥ 2L(ln(2) + 1). Now, following the ε-net-arguments around (H.4), we have with
probability at least 1− (1 + 2/ε)d

∑
m∈Cq p

(m)
q,δ that

λmax

(
X(m,a)⊤

q X(m,a)
q /nm,q

)
≤ δ

1− 2ε
. (I.1)
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Next we bound λmin(X
(m,a)⊤
q X

(m,a)
q /nm,q). For any source vector v ∈ Rd, we have

v⊤(X(m,a)⊤
q X(m,a)

q /nm,q)v = v⊤

 1

nm,q

∑
t∈T (m)

q

xmt x
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(m)
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t∈T (m)

q

1(⟨v, x(m)
t ⟩2 ≥ µ)1(a

(m)
t = a).

Since a(m)
t = argmaxa∈[K]⟨β̂(m,a)

q−1 , x
(m)
t ⟩ for any t ∈ T (m)

q and m ∈ [M ], by Condition I.3, we
have

E[1(⟨v, x(m)
t ⟩2 ≥ µ)1(a

(m)
t = a)] = P(⟨x(m)

t , v⟩21(a(m)
t = a) ≥ µ) ≥ cx.

Therefore, by applying a Chernoff bound, we have

P
(
v⊤(X(m,a)⊤

q X(m,a)
q /nm,q)v ≤ µcx/2

)
≤ e−cxnm,q/8 ≜ p̃(m)

q . (I.2)

Then, using an ε-net argument and applying a union bound to (I.2), we have with probability
at least 1 − (1 + 2/ε)d

∑
m∈Cq p̃

(m)
q that v⊤(X(m,a)⊤

q X
(m,a)
q /nm,q)v ≥ µcx/2 holds for any

v ∈ Nd(ε) and m ∈ Cq. Therefore, following the argument around (H.7), we obtain

λmin

(
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q X(m,a)
q /nm,q

)
≥ µcx

2
− 2εδ

1− 2ε
.

Finally, letting δ = 32max{L,
√
L} and ε = µcx/(8δ + 2µcx), we have 2εδ/(1− 2ε) = µcx/4

and p
(m)
q,δ ≤ e−n

(m)
a,q ≤ e−cxnm,q/8 = p̃

(m)
q . Therefore, λmin

(
X

(m,a)⊤
q X

(m,a)
q /nm,q

)
≥ µcx/4 holds

for all a ∈ [K] and m ∈ Cq with probability at least

1− (1 + 2/ε)dK
∑
m∈Cq

(p̃(m)
q + p

(m)
q,δ ) ≥ 1− 2(1 + 2/ε)dK
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e−cxnm,q/8

≥1− exp

(
−
cx minm∈Cq nm,q

8
+ ln(2MK) + d ln

(
5 + 512max{L,

√
L}/(µcx)
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.

In particular, there is C ′
b ≥ 3 depending only on cx, such that when minm∈Cq n

(m)
a,q ≥

C ′
b(ln(MKT ) + d ln(L/µ)), the probability is lower bounded by 1− 1/T .

Given Lemma I.1, using Theorem 1, we can bound the ℓ2 estimation error E[maxa∈[K] ∥β̂(m,a)
t −

β(m,a)∥2] for all m ∈ Cq at the end of batch Hq as follows.

Lemma I.2. Under Conditions 6, 7, and I.1-I.3, for any 0 ≤ q < Q, letting τ = argminm∈[M ](p
1∨∑

ℓ∈[M ] p
ℓ/m))/pm, if |Hq| ≥ 2C ′

b(ln(MKT ) + d ln(L/µ))/pτ with C ′
b defined in Lemma I.1,

it holds with probability at least 1− 2/T that for all a ∈ [K] and q ∈ Cq,

E[max
a∈[K]

∥β̂(m,a)
q − β(m,a)∥22 | (X(m,a)

q , Y (m,a)
q )a∈[K],m∈Cq ] = Õ

(
1

µ|Hq|

(
s

pm
+

d

p[M ]

))
,

where the expectation is taken with respect to the randomness of the noise, and logarithmic
factors as well as quantities depending only on cx, cf are absorbed into Õ(·).
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Proof. The proof is essentially the same as the proof of Lemma 1. We thus omit the proof.

Based on Lemma I.2, we can bound the individual regret as follows.

Theorem I.1. Under Conditions 6, 7, and I.1-I.3, for any T ≥ 1 and 1 ≤ H0 ≤ d, the
expected regret of MOLARB under Model-P, for any T ≥ 1, is bounded as

E[R(m)
T ] = Õ

(
·d ∧ (Tpm) +

√(
s+

dpm
p[M ]

)
Tpm

)
,

where logarithmic factors as well as quantities depending only on cx, cf are absorbed into
Õ(·).

Proof. For any t ∈ Hq, 0 ≤ q ≤ Q, and m ∈ [M ], we have for m ∈ St,

max
a∈[K]
⟨x(m)

t , β(m,a) − β(m,a
(m)
t )⟩ ≤ max

a,a′∈[K]
⟨x(m)

t , β(m,a) − β(m,a′)⟩ ≤ 2 max
a∈[K]

|⟨x(m)
t , β(m,a)⟩|. (I.3)

Also, from the definition of a(m)
t , we have ⟨x(m)

t , β̂
(m,a)
q−1 ⟩ ≤ ⟨x

(m)
t , β̂

(m,a
(m)
t

q−1 ⟩ for any a ∈ [K].
Therefore, the instantaneous regret can be bounded, for m ∈ St, as

max
a∈[K]
⟨x(m)

t , β(m,a) − β(m,a
(m)
t )⟩ = max

a∈[K]
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q−1 + β̂
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q−1 − β̂

(m,a
(m)
t )

q−1 ⟩

≤max
a∈[K]
⟨x(m)

t , β(m,a) − β̂(m,a)
q−1 + β̂

(m,a
(m)
t )

q−1 − β̂(m,a
(m)
t )

q−1 ⟩ ≤ 2 max
a∈[K]

|⟨x(m)
t , β(m,a) − β̂(m,a)

q−1 ⟩|. (I.4)

By combining (I.3), (I.4) and further using Condition I.2 and Lemma B.2, we obtain

E
[
max
a∈[K]
⟨x(m)

t , β(m,a) − β(m,a
(m)
t )⟩1(m ∈ St) | {β̂(m,a)

q−1 }a∈[K]

]
≤2 max

a∈[K]

(
∥β(m,a)∥2 ∧ ∥β(m,a) − β̂(m,a)

q−1 ∥2
)√

2 ln(2K)LP(m ∈ St)

≤2pm max
a∈[K]

(
∥β(m,a)∥2 ∧ ∥β(m,a) − β̂(m,a)

q−1 ∥2
)√

2 ln(2K)L. (I.5)

Taking expectations of (I.5) with respect to {β̂(m,a)
q−1 }a∈[K], we find

E
[
max
a∈[K]
⟨x(m)

t , β(m,a) − β(m,a
(m)
t )⟩1(m ∈ St)

]
≤ 2
√

2 ln(2K)LpmE[max
a∈[K]

1 ∧ ∥β̂(m,a)
q−1 − β(m,a)∥2].

(I.6)
Given (I.6), it remains to bound the estimation error E[maxa∈[K] ∥β̂(m,a)

q−1 − β(m,a)∥2] for all
0 ≤ q ≤ Q and m ∈ [M ]. Therefore, the rest follows the argument in the proof of Theorem
3 and uses Lemma I.2.
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I.2 Lower Bound

We also establish the regret lower bound under Model-P as follows.

Theorem I.2. Given any 1 ≤ s ≤ d and {pm}m∈[M ] ⊆ [0, 1], for any m ∈ [M ], when T ≥
max{(d + 1)/p[M ], (s + 1)/pm}/(16L) + 1, there are {β(m,a)}a∈[K],m∈[M ] satisfying Condition
I.1 and distributions of contexts satisfying Condition I.2 and I.3, such that for any online
Algorithm A,

E[R(m)
T (A)] = Ω

(√(
s+

dpm
p[M ]

)
Tpm

)
.

Proof. We consider the two-armed case where K = 2 and β(m,2) = −β(m,1) for all m ∈ [M ].
We prove Ω(

√
sTpm) and Ω(

√
dTpm/p[M ]) by considering two cases: the homogeneous case

where β(1,1) = · · · = β(M,1) = β⋆(1) and the s-sparse case where β⋆(1) = 0 and ∥β(m,1)∥0 ≤ s
for all m ∈ [M ].

The homogeneous case. Since β(1,1) = · · · = β(M,1) = β⋆(1) in this case, for simplicity, we
omit the superscript m and use βa to denote β(m,a) for any k ∈ [K]. Denote by Q the uniform
distribution over {β ∈ Rd : ∥β∥2 = ∆} where ∆ ∈ [0, 1] will be determined below. We let Q
be the prior distribution of β1, and let D ≜ N (0, LId) be the distribution of contexts. Let
St be the set of activated bandits at the t-th round, and denote by Pβ1,x,t the distribution
of the observed rewards {y(m)

ℓ 1(m ∈ St) : m ∈ [M ]}tℓ=1 up to time t, conditioned on β1 and
the contexts {x(m)

ℓ : a ∈ [2],m ∈ [M ]}tℓ=1. Since the event {m ∈ St} is independent of the
history and of the contexts {x(m)

t,a : a ∈ [2]} at the current round, we have

sup
β1

E[R(m)
T (A)] ≥Eβ1∼Q[R

(m)
T (A)] =

T∑
t=1

EQ

[
ED

[
EPβ1,x,t−1

[
pm max

a∈[2]
⟨x(m)

t , βa − βa(m)
t
⟩
]]]

(I.7)

where the factor of pm in (H.20) is due to the integration over the randomness of {m ∈ St}.
Since β2 = −β1, we have

max
a∈[2]
⟨x(m)

t , βa − βa(m)
t
⟩ = 21(a

(m)
t = 1)⟨x(m)

t , β1⟩− + 21(a
(m)
t = 2)⟨x(m)

t , β1⟩+

where the subscripts + and − denote the positive and negative parts, respectively. Therefore,
from (I.7), we have that supβ E[R

(m)
T (A)] is lower bounded by

2pm

T∑
t=1

EQ

[
ED

[
EPβ1,x,t−1

[
1(a

(m)
t = 1)⟨x(m)

t , β1⟩− + 1(a
(m)
t = 2)⟨x(m)

t , β1⟩+
]]]

. (I.8)

For any 1 ≤ t ≤ T , conditionally on x
(m)
t , we define two measures Q(m)+

t and Q
(m)−
t via

the Radon–Nikodym derivatives dQ
(m)+
t (β1) = ⟨x(m)

t , β1⟩+/Z(x(m)
t )dQ and dQ

(m)−
t (β1) =

⟨x(m)
t , β1⟩−/Z(x(m)

t ) dQ, where Z(x(m)
t ) = EQ[⟨x(m)

t , β1⟩+] = EQ[⟨x(m)
t , β1⟩−] is a normaliza-

tion factor. Here EQ[⟨d(m)
t , β1⟩+] = EQ[⟨d(m)

t , β1⟩−] due to the symmetry of Q. Plugging the
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definitions of Q(m)+
t and Q(m)−

t into (I.8), and changing the integration order, we have

sup
β

E[R(m)
T (A)] ≥2pm

T∑
t=1

ED

[
Z(x

(m)
t )

(
E

Pβ1,x,t−1◦Q
(m)−
t

[1(at = 1)] + E
Pβ1,x,t−1◦Q

(m)+
t

[1(at = 2)]
)]

≥2pm
T∑
t=1

ED

[
Z(x

(m)
t )

(
1− TV(Pβ1,x,t−1 ◦Q(m)−

t , Pβ1,x,t−1 ◦Q(m)+
t )

)]
≥2pm

T∑
t=1

ED

[
Z(x

(m)
t )

(
1−

√
1

2
DKL(Pβ1,x,t−1 ◦Q(m)+

t ∥Pβ1,x,t−1 ◦Q(m)−
t )

)]
(I.9)

where the second inequality follows the definition of the total variation distance: P1(A) +
P2(A

c) ≥ 1− TV(P1, P2) with A = {at = 1}, and the third inequality follows from Pinsker’s
inequality TV(P1, P2) ≤

√
DKL(P1 ∥P2)/2.

Due to the distribution of x(m)
t , x(m)

t ̸= 0 with probability one; hence we can set u(m)
t =

x
(m)
t /∥x(m)

t ∥2 and the zero probability event where x(m)
t = 0 does not affect the result. We

also let β̃(m)
1,t = β1 − 2⟨u(m)

t , β1⟩u(m)
t , and we have

β1 = β̃
(m)
1,t − 2⟨u(m)

t , β̃
(m)
1,t ⟩u

(m)
t . (I.10)

Since ⟨x(m)
t , β1⟩− = ⟨x(m)

t , β̃
(m)
1,t ⟩+ and Q is reflection-invariant, one can equivalently obtain

β1 ∼ Q
(m)−
t by first generating β̃(m)

1,t ∼ Q
(m)+
t and then calculating β1 via (I.10). It thus holds

that

Pβ1,x,t−1 ◦ (β1 ∼ Q
(m)−
t ) =P

β̃
(m)
1,t −2⟨u(m)

t ,β̃
(m)
1,t ⟩u(m)

t ,x,t−1
◦ (β̃(m)

1,t ∼ Q
(m)+
t )

d
=P

β1−2⟨u(m)
t ,β1⟩u(m)

t ,x,t−1
◦ (β1 ∼ Q

(m)+
t ).

Following the above argument and (I.9), we have

2pm

T∑
t=1

ED

[
Z(x

(m)
t )

(
1−

√
1

2
DKL(Pβ1,x,t−1 ◦Q(m)+

t ∥Pβ1−2⟨ut,β1⟩ut,x,t−1 ◦Q(m)+
t

)]
.

By Lemma B.7, supβ E[R
(m)
T (A)] is further lower bounded by

sup
β

E[RT (A)]

≥pm
T∑
t=1

ED

[
Z(x

(m)
t )

(
1−

√
1

2
E

β1∼Q
(m)+
t

[
DKL(Pβ1,x,t−1 ∥Pβ1−2⟨u(m)

t ,β1⟩u(m)
t ,x,t−1

)
])]

.

(I.11)

Since the reward noise follows the distribution N (0, 1), conditioned on the activation sets
{Sℓ}t−1

ℓ=1, we have Pβ1,x,t−1 = ⊗t−1
ℓ=1 ⊗r∈Sℓ

N (⟨β
a
(r)
ℓ
, x

(r)
ℓ ⟩, 1). Furthermore, by the formula for
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the divergence between two Gaussian distributions, we have

DKL

(
Pβ1,x,t−1 ∥Pβ1−2⟨u(m)

t ,β⟩u(m)
t ,x,t−1

| {Sℓ}t−1
ℓ=1

)
=
1

2

t−1∑
ℓ=1

∑
r∈Sℓ

(
⟨β

a
(r)
ℓ
, xrℓ,⟩ − ⟨βa(r)ℓ

− 2⟨u(m)
t , β

a
(r)
ℓ
⟩u(m)

t , x
(r)
ℓ ⟩
)2

=2⟨u(m)
t , β1⟩2

t−1∑
ℓ=1

∑
r∈Sℓ

⟨u(m)
t , x

(r)
ℓ ⟩

2 = 2⟨u(m)
t , β1⟩2

t−1∑
ℓ=1

∑
r∈[M ]

⟨u(m)
t , x

(r)
ℓ ⟩

21(r ∈ Sℓ). (I.12)

Since the events {r ∈ Sℓ} for ℓ ∈ [t− 1] and r ∈ [M ] are independent of the contexts and of
β1, using (I.12) and Lemma B.7, we obtain

DKL(Pβ1,x,t−1 ∥Pβ1−2⟨u(m)
t ,β1⟩u(m)

t ,x,t−1
)

≤E{Sℓ}t−1
ℓ=1

[
DKL

(
Pβ1,x,t−1 ∥Pβ1−2⟨u(m)

t ,β1⟩u(m)
t ,x,t−1

| {Sℓ}t−1
ℓ=1

)]
=2⟨u(m)

t , β1⟩2
t−1∑
ℓ=1

∑
r∈[M ]

⟨u(m)
t , x

(r)
ℓ ⟩

2P(r ∈ Sℓ) = 2⟨u(m)
t , β1⟩2p[M ]

t−1∑
ℓ=1

⟨u(m)
t , x

(r)
ℓ ⟩

2. (I.13)

Therefore, combining (I.11) and (I.13), we have

sup
β

E[R(m)
T (A)]

≥2pm
T∑
t=1

ED

Z(x(m)
t )

1−

√√√√E
Q

(m)+
t

[⟨u(m)
t , β1⟩2]um⊤

t

(
p[M ]

t−1∑
ℓ=1

x
(r)
ℓ xr⊤ℓ

)
umt

 . (I.14)

Taking expectations in (I.14) with respect to {x(r)ℓ : r ∈ [M ]}t−1
ℓ=1, supβ E[R

(m)
T (A)] is lower

bounded by

2pm

T∑
t=1

E
x
(m)
t

[
Z(x

(m)
t )

(
1−

√
2(t− 1)Lp[M ]EQ

(m)+
t

[⟨u(m)
t , β1⟩2]

)]
, (I.15)

where the outer expectation is only over the randomness of x(m)
t . We next calculate EQ+

t
[⟨ut, β1⟩2]

and Z(x(m)
t ). By (H.32), we have

E
Q

(m)+
t

[⟨u(m)
t , β1⟩2] =

2∆2

d+ 1
. (I.16)

We also have

E
x
(m)
t

[Z(x
(m)
t )] = E

x
(m)
t

[EQ[⟨x(m)
t , β1⟩+]] =

1

2
E

x
(m)
t

[EQ[|⟨u(m)
t , β⟩|]]

=
1

2
E

x
(m)
t

[
∥x(m)

t ∥2
] ∆Γ(d

2
)

Γ(d+1
2
)
√
π
= Ω(

√
L∆). (I.17)
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Combining (I.15), (I.16), and (I.17), we have

sup
β

E[R(m)
T (A)] ≥Ω(pm

√
L∆)

T∑
t=1

(
1−

√
4(t− 1)L∆2

(d+ 1)
p[M ]

)
. (I.18)

Plugging ∆ =

√
(d+1)

4
√

(T−1)L
∑

r∈[M ] pr
≤ 1 into (I.18), we finally establish

sup
β

E[RT (A)] = Ω
(
pmT
√
L∆
)
= Ω

(√
dTp2m/p[M ]

)
.

The s-sparse case. In this case, we consider supp(β(1,1)), . . . , supp(β(M,1)) located in
the first s coordinates. If the supports of {β(m)

1 }m∈[M ] are known by the analyst, then the
structure of sparse heterogeneity and the common β⋆(1) is non-informative for estimating
{β(m,1)}m∈[M ]. Therefore, in this case, we can obtain the lower bound Ω(

√
sTpm) by simply

adapting the proof for the homogeneous case with M = 1 in s dimensions.
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J Experimental Details

J.1 Synthetic Experimental Details

To ensure a fair comparison of methods, we set the regularization parameter λm of LASSO/
LASSOB, RM/RMB, and TNB, and the threshold parameter γm of MOLAR/MOLARB
guided by theoretical results to obtain optimal rates with respect to n, d, and M (Xu and
Bastani, 2021; Bastani and Bayati, 2020; Cella et al., 2022). Our simulation setup follows
conventions from the most closely related statistical literature (Chen et al., 2021; Chan, 2017;
Camerlenghi et al., 2019; Xu and Bastani, 2021; Bastani and Bayati, 2020).

Specifically, we set λm = cλ
√

ln(d)/nm for LASSO/LASSOB and RM/RMB, γm =

cγ ln((n[M ]/nm)∧ d)/nm) for MOLAR/MOLARB, λm = cλ
√

(M + d)/nm for TNB. We only
tune the numerical coefficient cλ and cγ on a pre-specified grid {0.05σ, 0.35σ, 0.7σ, σ, 2σ},
where σ is the standard deviation of noise. We tune these numerical coefficients to lead to
the best ℓ1 estimation errors on independently generated data with n = 5, 000.

Note that σ = 0.1 in our offline linear regression setup. After tuning, we take cλ = 0.005
for LASSO; we take cλ = 0.035 for RM and set the trimming-related parameters to the
default values ζ = 0.1, η = 0.1 suggested by Xu and Bastani (2021); we take cγ = 0.1 for
MOLAR with the option of hard thresholding, respectively.

In contextual bandits, the noise scale is set as σ = 0.5. We initialize the first batch
size |H0| = 1 to use data efficiently. In the bandit case, the parameters associated with the
reported results are cλ = 0.025 for LASSOB, cλ = 1 for TNB, (ζ, η, cλ) = (0.1, 0.1, 0.175) for
RMB, and cγ = 0.5 for MOLARB with the option of hard thresholding, respectively.

J.2 PISA Experimental Details

The PISA2012 dataset (OECD, 2019) consists of 485, 490 student records collected from 68
countries1. However, records associated with many of these countries have more than half
the data missing and contain constant features. Thus, we restrict our experiment to the
M = 15 countries with the largest sample sizes. The sample sizes in these countries range
from 7, 038 to 33, 806, while the data contains about 500 features.

Since many features are highly correlated or are constant across records, to avoid ill-
conditioning, we pre-process the data as follows. We create dummy variables to indicate
missing values and then fill missing values with zeroes. We apply the LASSO globally
to select features, with the regularization hyperparameter selected automatically via 10-fold
cross-validation. We then filter out features with pairwise correlations higher than 0.6 among
the selected ones, doing this sequentially in the order given by the PISA dictionary. This
finally leaves us with 57 features.

1It is accessible at https://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm (of-
ficial website) and https://s3.amazonaws.com/udacity-hosted-downloads/ud507/pisa2012.csv.zip
(an exterior csv format).
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Figure 6: Regret R(m)
T of the top largest 15 countires of the PISA dataset. The shaded regions

depict the corresponding 95% normal confidence intervals based on the standard errors from
twenty independent trials.
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To visibly judge the heterogeneity of the processed datasets, we compute the OLS esti-
mates {β̂(m)}Mm=1 for all countries individually, along with a shared estimate β̂⋆ obtained
by taking the covariate-wise median over the OLS estimates. We then plot the differ-
ences |δ(m)| = |β̂(m) − β̂⋆| with values below 6

√
[(X(m)⊤X(m))−1]k,k set as zero. Note that√

[(X(m)⊤X(m))−1]k,k corresponds to the magnitude of the variation of OLS estimates under
standard Gaussian noises. The final result is shown in Figure 1. Note that Figure 1 is plot-
ted before splitting the data for the experiments. In Figure 1, we see that the differences in
coefficients seem to be consistent with being sparse.

We take K = 2 since our arms are to predict the student with a better mathematics
score. To enable evaluation, we randomly split the data into a large test set, a small training
set, and a small validation set with proportions (90%, 5%, 5%) and (80%, 15%, 5%) for
offline and online experiments, respectively. We use the individual OLS estimates of the test
set as proxies for true parameters and evaluate methods on the training set with parameters
tuned based on the validation set.

Once again, to ensure a fair comparison of methods, we set the hyperparameters λ and γ
in the same manner as in the synthetic results, as suggested by theoretical results to achieve
optimal rates of convergence. We only tune the numerical coefficients over a pre-specified
grid {0.05, 0.35, 0.7, 1, 2}, and report the optimal results. We run the bandit methods on
this processed data in the same manner as in the simulations. Here we run MOLAR and
MOLARB with the option of soft thresholding.

We repeat experiments starting from data splitting for 100 and 20 times for offline and
online experiments, respectively. The regrets for all 15 countries (Mexico, Italy, Spain,
Canada, Brazil, Australia, UK, UAE, Switzerland, Qatar, Colombia, Finland, Belgium,
Denmark, and Jordan from top to bottom, left to right) are in Figure 6.

J.3 Ablation Studies

J.3.1 Robustness Examinations for MOLAR

We first examine the robustness of MOLAR to the choice of cγ. To this end, we repeat the
experiments in Figure 2 and simulate MOLAR with empirically estimated noise variances
through

σ̂m :=

√
∥X(m)β̂

(m)
ind − Y (m)∥22/(nm − d)

and varying cγ. The results are depicted in Figure 7. By comparing MOLAR with the
individual OLS estimates, we observe that MOLAR exhibits advantages for all values of the
threshold. In particular, MOLAR is robust for slightly large cγ).

J.3.2 Correlated Covariates & Disparate Sample Sizes

To supplement the experiments in Figures 2 and 7 where Σ(m) = Id and nm = n for all
m ∈ [M ], we also conduct similar experiments for correlated covariates with disparate tasks-
wise covariances and sample sizes. Here, for each task m ∈ [M ], we select the covariance
matrix as Σ(m) = Q(m)diag((1 + 4(k − 1)/d)k∈[d])Q

(m)⊤ where Q(m) ∈ Rd×d is a randomly
generated orthonormal matrix. Since Σ(m) ̸= Id, the covariates are correlated.
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Figure 7: Average ℓ1 estimation error for MOLAR with varying thresholding parameters.
(Left): Fixing s = 20, M = 30 and varying n. (Middle): Fixing s = 20, n = 5, 000 and
varying M . (Right): Fixing M = 30, n = 5, 000 and varying s. The standard error bars are
obtained from ten independent trials.

For each pre-specified n, we determine the task-wise sample sizes {nm}Mm=1 by first draw-
ing a Dirchlet random vector (z1, . . . , zd) with 0 ≤ zk ≤ 1 and

∑d
k=1 zk = 1, and then

round Mnzk to obtain the sample size nm. By doing this splitting, we roughly maintain
n[M ] =

∑M
m=1 nm ≈Mn but introduce significant disparity among {nm}Mm=1. We thus apply

the weighted median to obtain the global estimate β̂⋆ with wm = nm for all m ∈ [M ] and
set other hyperparameters the same as in Section J.1. The results are shown in Figure 8.
Again, we observe a significant advantage of MOLAR over other baseline approaches.
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Figure 8: Average ℓ1 estimation error for multitask linear regression under correlated co-
variates with disparate task-wise covariances {Σ(m)}Mm=1 and sample sizes {nm}Mm=1. (Left):
Fixing s = 20, M = 30 and varying n. (Middle): Fixing s = 20, n = 5, 000 and varying M .
(Right): Fixing M = 30, n = 5, 000 and varying s. The standard error bars are obtained
from ten independent trials.

J.3.3 Robustness Checks for MOLARB

We also provide a robustness check for MOLARB by varying cγ and |H0|. We investigate the
cumulative expected regret of MOLARB while varying the first batch size |H0| ∈ {1, 5, 10},
and the numerical coefficient cγ ∈ {0.175, 0.35, 0.5, 1}. The results, presented in Figure 9, are
computed in the same setup as the synthetic bandit simulations. We find that the cumulative
regret performance of MOLARB is not substantially impacted by changing the parameters
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by up to an order of magnitude. This suggests that MOLARB is quite robust to |H0| and
cγ in this range.

J.3.4 Usage of Historical Batches

Since MOLARB empties all batch-wise buffers of contexts after using them to update es-
timates {β̂(m)}Mm=1, we also compare MOLARB with a variant where all historical con-
texts in each arm are maintained. In this variant, we still use each brand-new batch
{(X(m)

q , Y
(m)
q )}Mm=1 to collaboratively learn the global estimate β̂⋆

q , yet the step of covariate-
wise shrinkage in obtaining the task-wise estimates β̂(m) leverages all previous batches
(X

(m)
[q] , Y

(m)
[q] ) in the m-th bandit. The results of this variant are marked as “use_hist” in

Figure 9. We find that MOLARB does not lose significant sample efficiency, compared to
this variant. This finding is consistent with our theoretical results that MOLARB is minimax
optimal in this multi-task setup.

Figure 9: Regret R(m)
T accumulated by MOLARB of an instance with activation probability

0.91 with varying |H0| and tuning coefficient cγ, where shaded regions depict the corre-
sponding 95% normal confidence intervals based on standard errors calculated over twenty
independent trials.
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