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Decision-makers often simultaneously face many related but heterogeneous learning problems. For instance,

a large retailer may wish to learn product demand at different stores to solve pricing or inventory problems,

making it desirable to learn jointly for stores serving similar customers; alternatively, a hospital network may

wish to learn patient risk at different providers to allocate personalized interventions, making it desirable to

learn jointly for hospitals serving similar patient populations. Motivated by real datasets, we study a natural

setting where the unknown parameter in each learning instance can be decomposed into a shared global

parameter plus a sparse instance-specific term. We propose a novel two-stage multitask learning estimator

that exploits this structure in a sample-efficient way, using a unique combination of robust statistics (to learn

across similar instances) and LASSO regression (to debias the results). Our estimator yields improved sample

complexity bounds in the feature dimension d relative to commonly-employed estimators; this improvement

is exponential for “data-poor” instances, which benefit the most from multitask learning. We illustrate

the utility of these results for online learning by embedding our multitask estimator within simultaneous

contextual bandit algorithms. We specify a dynamic calibration of our estimator to appropriately balance the

bias-variance tradeoff over time, improving the resulting regret bounds in the context dimension d. Finally,

we illustrate the value of our approach on synthetic and real datasets.
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1. Introduction

Predictive analytics powers data-driven decision-making across many domains. However, many

problems in practice suffer from “small data” — i.e., only a very limited quantity of labeled data is

available from the target predictive task, hindering training of highly accurate predictive models.

As a consequence, a common solution is to leverage training data from related (but different)

predictive tasks to reduce variance. In other words, we have an opportunity to not only learn

within each predictive task, but also across similar tasks. To illustrate, consider the following two

examples from healthcare and revenue management respectively:

Example 1 (Medical Risk Scoring). Health providers seek to predict patient-specific risk

for adverse events (e.g., diabetes) in order to target preventative interventions. To this end, in our
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experiments in §6, we use electronic medical record data to predict the likelihood of an upcom-

ing Type II diabetes diagnosis for patients. Learning this risk score primarily from patient data

collected at the target hospital (where the patient is being seen and treatment decisions will be

made) is important to account for idiosyncrasies that are specific to the hospital and the patient

population it serves. Indeed, we find that a predictive model trained using electronic medical record

data from one hospital performs quite poorly when evaluated on patients from other hospitals

(see Figure 1 below), with the out-of-sample AUC degrading significantly from 0.8 at the target

hospital to 0.5-0.65 at other hospitals. This is due to a well-known phenomenon called dataset shift

(Quiñonero-Candela et al. 2008); in the medical context, this can arise due to systematic differences

across hospitals in diagnosis/treatment behavior, healthcare utilization, or medical coding (see,

e.g., Subbaswamy and Saria 2020, Bastani 2021, Mullainathan and Obermeyer 2017). Therefore, to

obtain good performance for all patients, each hospital faces a distinct learning problem. Yet, we

may expect hospitals that serve similar patient populations to have similar underlying predictive

models, creating an important opportunity to transfer knowledge across problem instances.
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Figure 1 Out-of-sample performance (measured by AUC) of a predictive model trained on data from Hospital

1 evaluated on patients from Hospital 1 (green) and Hospitals 2 - 13 (yellow). Point estimates and 95%

confidence intervals are based on 1,000 random draws. We observe a significant degradation in predictive

performance in non-target hospitals due to dataset shift.

Example 2 (Demand Prediction). Large retailers need to predict store-specific demand for

their various products to inform dynamic pricing or inventory management decisions. Again, to

protect from dataset shift, it is important to learn this demand model primarily from sales data

collected at the target store (where sales occurred and decisions will be taken); this will account

for idiosyncrasies that are specific to the store and the customer population it serves, including

systematic differences in customer trends/preferences, in-store product placement, or promotion

decisions (see, e.g., Baardman et al. 2020, Cohen and Perakis 2018, van Herpen et al. 2012).

As a result, each store faces a distinct learning problem. Yet, we may expect stores that serve
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similar customer populations to have similar underlying demand models, creating an important

opportunity to transfer knowledge across problem instances.

There are numerous other examples where we wish to learn predictive models across related tasks

to inform targeted decision-making policies — e.g., customer promotion targeting for many different

promotions, A/B testing on platforms for many candidate interventions, and clinical trials for

many promising combination therapies. While the data-driven decision-making literature typically

considers a single decision-maker solving an isolated problem instance, we focus on developing

algorithms for the setting with many (potentially simultaneous) related learning tasks. We also

extend our approach to online learning via simultaneous contextual bandits — predictive algorithms

that are effective with “small data” are especially useful here because bandits are largely used in

problems where there is little historical data available, e.g., due to the novelty or nonstationarity

of the learning problem, or the limited population size relative to the feature dimension.

We build on the transfer and multitask learning literature (Caruana 1997, Pan et al. 2010), which

proposes general algorithms to transfer knowledge across problem instances to improve learning.

Unfortunately, these algorithms typically do not improve parameter recovery bounds (ignoring

constants) — i.e., they do not significantly improve predictive performance compared to treating

each learning task as its own independent problem. Indeed, in general, transfer or multitask learning

cannot improve predictive accuracy without assuming some form of shared structure connecting

the different problem instances — intuitively, if the predictive tasks are unrelated, then learning in

one task cannot significantly improve learning in others (Hanneke and Kpotufe 2020). Our work

bridges this gap by imposing a natural shared structure — sparse heterogeneity — motivated via

real datasets. By designing a multitask estimator that efficiently exploits this structure, we obtain

improved performance bounds in the context dimension d for offline and online learning.

Sparse Heterogeneity. Each problem instance (or, task) j is parameterized with a predictive

parameter vector βj — e.g., the parameters of a linear regression model predicting the reward of

each decision as a function of the observed features. Without loss of generality, we can write

βj = β†+ δj,

where β† represents the portion of the parameter vector that is “shared” across similar tasks,

and δj is the task-specific portion that represents idiosyncratic biases specific to task j. Sparse

heterogeneity imposes that the task-specific bias δj is sparse — i.e., only a few of its components

are nonzero (see, e.g., Bastani 2021, Xu et al. 2021, Tian and Feng 2022, Li et al. 2023). Prior work

has argued that this is the case when some (unknown) mechanism systematically affects a subset

of the features, e.g., some hospitals under-diagnose certain conditions (Bastani 2021), or a domain

change affects the meaning of a subset of words in natural language (Xu et al. 2021).
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We empirically examine this assumption in the context of our previous Example 1. Specifically,

we train separate linear models {β̂j}13
j=1 for predicting diabetes risk at each of the 13 hospitals

using hospital-specific electronic medical record data. Then, we use the trimmed mean to estimate

the shared model (for reasons explained in §3), and compute the resulting task-specific parameters

{δ̂j}13
j=1 for each hospital by subtracting the estimated shared parameter from {β̂j}13

j=1. If there

was no idiosyncratic task-specific bias for each hospital, these parameters would be statistically

indistinguishable from zero; on the other hand, if the predictive tasks for each hospital had no

shared structure, these parameters would be large and non-sparse. Each row of Figure 2 below

shows a heatmap of the nonzero coefficients of the task-specific parameter |δ̂j| across 77 features

used for prediction. We find that each task exhibits statistically distinguishable hospital-specific

idiosyncrasies in the underlying predictive model. Furthermore, in support of our hypothesis of

sparse heterogeneity, each ‖δ̂j‖0 ≤ 8� 77, i.e., task-specific parameters are s-sparse with s/d. 0.1

(see Appendix G.3 for more details).
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Figure 2 Heatmap of nonzero coefficients given by the estimated task-specific parameters {|δj |}13
j=1 for each

hospital. Each row represents one of 13 hospitals and each column represents one of 77 features extracted from

the data. Nonzero coefficients are determined by a bootstrap hypothesis test across 500 random draws of the

data (see Appendix G.3); we set coefficient i of row j to be zero if the null hypothesis (δj(i) = 0) is not rejected at

a 5% significance level. Each ‖δ̂j‖0� d, lending support for our hypothesis of sparse heterogeneity.

Existing multitask learning algorithms (e.g., pooling data or regularizing estimates across prob-

lem instances) are not designed to leverage this structure (see §1.1 for an overview of current

methods). Thus, we first propose a novel two-stage multitask estimator, RMEstimator, that exploits

this structure in the supervised learning setting. In the first stage, it leverages the trimmed mean

from robust statistics (Rousseeuw 1991, Lugosi and Mendelson 2021) to estimate a “shared” model

β̂† across data collected from similar tasks.1 Then, in the second stage, it uses LASSO regression

1 Note that we do not attempt to estimate the original shared parameter β†, since it is not identifiable; rather, as
discussed in §3, it suffices to estimate some β̃† that lies in an `0 ball of radius O(s) around β†.
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(Chen et al. 1995, Tibshirani 1996a) to efficiently learn the task-specific bias δj, which can be

combined with our estimate of β† to obtain the task-specific parameter βj. We prove finite-sample

generalization bounds that show favorable performance (compared to popular baselines), especially

in terms of the feature dimension d; importantly, this error bound improvement is exponential for

“data-poor” learning tasks, which stand to benefit the most from shared learning.

As noted earlier, we believe such a data-efficient approach is especially useful for bandit problems,

since they often operate with limited historical data. To this end, we extend our results to online

learning by embedding the RMEstimator within simultaneous linear contextual bandit algorithms

running at each problem instance. We specify a dynamic calibration of our estimator within the

RMBandit algorithm to appropriately balance the bias-variance tradeoff arising from incorporating

auxiliary data from similar bandit instances (multitask learning) in conjunction with the classical

exploration-exploitation tradeoff (bandit learning). We derive upper bounds for the cumulative

regret of the RMBandit, demonstrating improvements in the context dimension d; analogous to the

offline setting, this regret improvement is exponential for data-poor bandit instances.

Finally, we empirically evaluate our approach on both synthetic and real datasets in healthcare

and pricing. We find that our multitask learning strategy based on the RMEstimator substantially

speeds up learning and improves overall performance in both offline and online settings.

1.1. Related Literature

Our work relates to the literature on multitask learning and contextual bandits; we contribute on

both fronts. Our approach builds on the literature on robust and high-dimensional statistics.

There has been significant interest from the machine learning community on developing methods

that combine data from multiple learning problems (typically referred to as tasks). These can be

broadly classified into three categories: (i) multitask learning (Caruana 1997), where one aims to

learn jointly across a fixed set of similar tasks, (ii) transfer learning (Pan et al. 2010), a special

case of multitask learning, where the goal is to maximize performance on a distinguished “target”

task, and (iii) meta-learning (Finn et al. 2017), where one aims to learn from historical tasks to

improve learning in similar future tasks. Our problem is an instance of multitask learning, since

our goal is to learn across a fixed set of problem instances with related unknown parameters.

Multitask Learning. Naturally, if the tasks are sufficiently different, then learning in one task

cannot substantially improve learning in other tasks (Hanneke and Kpotufe 2020). Thus, a common

approach in machine learning is to assume that the underlying parameters across tasks are close

in `2 norm. Joint learning can then be operationalized by regularizing the estimated parameters

together, e.g., through ridge (Evgeniou and Pontil 2004) or kernel ridge (Evgeniou et al. 2005)

regularization. Alternatively, one can employ a shared Bayesian prior across tasks (Raina et al.
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2006, Gupta and Kallus 2021) or simply pool data from nearby tasks (Ben-David et al. 2010,

Crammer et al. 2008). However, these approaches do not improve performance bounds beyond

constants; in general, one must impose (and exploit) additional structure to obtain nontrivial

theoretical improvements. Bastani (2021) uses real datasets to motivate the assumption that the

parameters across tasks are close in `0 norm. This structure motivates a two-step estimator of

transfer learning using LASSO regression, yielding improved bounds in the feature dimension d

for supervised learning (Bastani 2021, Li et al. 2020a, Tian and Feng 2022, Li et al. 2023) and

unsupervised learning (Xu et al. 2021). One can further impose that the underlying parameters

for each task are sparse, sharing the same support (Lounici et al. 2009, Li et al. 2023) or similar

covariance matrices (Li et al. 2020a, Tian and Feng 2022) across tasks; we do not make these

assumptions since the applications we consider often have dense underlying parameters (see, e.g.,

Bastani 2021) and the covariance matrices vary widely across tasks due to covariate shifts (e.g.,

due to different customer populations at hospitals or stores, see Subbaswamy and Saria 2020).

We build on the last stream of two-step estimators for the multitask learning problem. However,

we need a fundamentally different algorithmic approach; as we discuss in §3, the challenge is

that the sparse bias terms can be poorly aligned across tasks, and thus classical estimates of the

shared model (e.g., via data pooling or model averaging) destroy task-specific sparse structure

and therefore cannot be debiased using LASSO (as was the case in prior work). Instead, we take

the view that each component where the bias terms align poorly suffers “corruptions” to the

shared model; we use a counting argument to show that either the number of corruptions must

be small, or the component is one of a small number of well-aligned components. We use robust

statistics to overcome corruptions for poorly-aligned components and LASSO to debias well-aligned

components. To the best of our knowledge, our work proposes the first such combination of robust

statistics and high-dimensional regression, yielding improved bounds for multitask learning.

The first step of our approach (using robust statistics) relates to recent robust machine learning

methods that can handle adversarial corruptions to a small fraction of the data (Yin et al. 2018,

Konstantinov and Lampert 2019). These approaches do not apply to our setting — as a conse-

quence of our sparse differences assumption, we show that only a few similar tasks (as opposed

to observations or features) have unknown parameters that are “corrupted” in most dimensions.

Rather, we build on the classical trimmed mean estimator (Rousseeuw 1991, Lugosi and Mendel-

son 2021). The second step (using LASSO) builds on the high-dimensional statistics literature

(Tibshirani 1996a, Candes and Tao 2007, Bickel et al. 2009, Bühlmann and Van De Geer 2011).

Multitask Bandits. A few recent papers have studied multitask learning across contextual

bandit instances; however, to the best of our knowledge, a key drawback of these algorithms is

that none of them ultimately improve the regret bounds for any bandit instance beyond constants.
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Similar to the multitask learning literature discussed above, one strategy is to regularize the learned

parameters for a given bandit instance towards parameters for similar bandit instances (Soare et al.

2014). For example, Cesa-Bianchi et al. (2013) and Deshmukh et al. (2017) leverage parameter

updates that are similar to kernel ridge regularization, and Gentile et al. (2014) additionally perform

a pre-processing step clustering bandit instances prior to such regularization; however, the resulting

regret bound for a single bandit instance may actually increase in the number of instances N .

Another popular approach is to impose a shared Bayesian prior across bandit instances (Cella et al.

2020, Bastani et al. 2021c, Kveton et al. 2021), but they also obtain similar results; furthermore,

these algorithms require the more restrictive assumption that bandit instances appear sequentially

(rather than simultaneously) in order to learn the prior. We embed our robust multitask estimator

across N linear contextual bandit instances; the specific setting and assumptions we consider are

based on Goldenshluger and Zeevi (2013), Bastani and Bayati (2020). We demonstrate that, unlike

prior work, we obtain improved regret bounds for each bandit instance in the context dimension

d under the practically-motivated sparse heterogeneity assumption; the improvement we obtain is

exponential for data-poor instances where shared learning is most helpful.

We empirically illustrate the value of our approach on well-studied data-driven decision-making

problems that leverage contextual bandit algorithms, such as personalized healthcare (Bastani and

Bayati 2020, Zhalechian et al. 2022) and dynamic pricing (Ban and Keskin 2021, Wang et al. 2021).

1.2. Contributions

We highlight our main technical contributions below:

1. In §3, we introduce the RMEstimator for multitask learning, which leverages a unique combina-

tion of robust statistics (for learning a shared model across tasks) and LASSO (for debiasing

this shared model for a specific task). In §4, we prove upper and lower bounds demonstrating

that our estimator outperforms intuitive baselines, and improves existing error bounds in the

feature dimension d; notably, this improvement is exponential for data-poor tasks.

2. We extend the RMEstimator to several settings of interest, including robustly learning in the

presence of some “outlier” tasks (§4.4), under generalized linear models (§4.5), and when we

must choose the subset of similar tasks to learn from (§4.6). Our results generalize naturally.

3. In §5, we embed our estimator in a multitask contextual bandit framework and propose the

RMBandit algorithm, with a suitable dynamic calibration of the RMEstimator. We introduce a

new batching strategy to ensure conditional independence of our parameter estimates across

bandit instances for the multitask setting. The resulting regret bounds analogously exhibit up

to exponentially improved scaling in the context dimension d.

Finally, we conclude with numerical experiments on both synthetic and real datasets.
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2. Problem Formulation

This section formulates multitask learning under sparse heterogeneity in the offline supervised

learning setting; we extend our results to the online contextual bandit setting in §5.

Notation. Let [n] denote the index set {1,2, · · · , n}. For any vector β ∈Rd and i∈ [d], let β(i) be

the ith element of β; for any index set I ⊆ [d], let βI denote the vector obtained by replacing the

elements of β that are not in I with 0’s. We use superscripts to index the task, e.g., the design

matrix Xj represents the covariates observed at task j. Further, for any square matrix Σ ∈Rd×d,

let λmin(Σ) and λmax(Σ) denote its minimum and maximum eigenvalues respectively. We use the

subscript (i, ·) to index the ith row of a matrix, (·, j) to index the jth column, and (i, j) to index

the (i, j)th element, e.g., X(i,·) is the ith row of matrix X.

Model. We consider N distinct problem instances, each facing a linear learning task, e.g., N

service providers such as hospitals in Example 1 and stores in Example 2; each task j ∈ [N ] has

nj observations (e.g., patients or customers). An observation i is associated with a d-dimensional

feature vector Xi ∈Rd. The response Yi of an individual i from task j has

Yi =X>i β
j + εi,

where the noise εi is an independent σj-subgaussian random variable (see Definition 1). Let the

vector Yj ∈ Rnj encode all observed responses in task j, and the vector εj ∈ Rnj encode the

corresponding noise terms.2

Definition 1. A random variable Z ∈R with mean µ=E[Z] is σ-subgaussian if, for any λ∈R,

E [exp (λ(Z −µ))]≤ exp (σ2λ2/2).

The formulation above captures any N linear instances; we now impose our assumption on sparse

heterogeneity. As discussed in the introduction, we impose that each task’s predictive parameter

can be decomposed into a shared parameter β† (that captures the similarity across all N instances)

and a task-specific parameter δj (that captures idiosyncratic behavior inherent to task j):

βj = β†+ δj,

where δj is sparse (i.e., ‖δj‖0 ≤ s for some s ∈ N) for all j ∈ [N ]. This key assumption enables us

to learn across instances efficiently. Note that we do not assume that the individual parameters

{βj}j∈[N ] or the shared models β† are themselves sparse, since the responses can often depend on

the entire set of observed covariates (see, e.g., discussion in Bastani 2021).

2 Note that the subgaussian parameter σj for the noise is task-dependent; this is because different providers serve
potentially very different populations, which is reflected in their feature/noise distributions.
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Remark 1. Note that the choice of the shared vector β† here is not unique — e.g., changes up

to O(s) components of β† preserve the sparsity of δj up to constant factors — and therefore is not

identifiable. As we describe in §3, it suffices for our purposes to estimate any vector β̃† that lies in

an O(s) ball in `0 norm centered around an admissible choice of β†.

For each task j, we construct the usual design matrix Xj ∈Rnj×d , where the ith row Xj
(i,·) =X>i .

Following standard practice for regularized regression (Tibshirani 1996b, Hastie et al. 2009), we

standardize each feature such that each column i of the design matrices satisfies

1

nj
‖Xj

(·,i)‖
2
2 = 1 . (1)

We further define the corresponding sample covariance matrices as

Σ̂j =
Xj>Xj

nj
.

Due to our normalization, every entry on the diagonal of Σ̂j is 1.

Performance. Our goal is to use the observed data {(Xj,Yj)}j∈[N ] to estimate the unknown

parameter vectors {βj}j∈[N ] for all tasks. We measure the performance of an estimator β̂j by its `1

error, i.e., ‖β̂j−βj‖1; a good estimator β̂j has a small estimator error, and hence a small prediction

error by noting that |X>i (β̂j −βj)| ≤ ‖Xi‖∞‖β̂j −βj‖1.

We first analyze the fixed design setting where the observations Xj are treated as given and

normalized as in (1) (§4.1). We then show how our results straightforwardly extend to the random

design setting where Xi is drawn i.i.d. from some (potentially unknown) distribution PjX (§4.3).

Note that the feature and noise distributions can vary as a function of the task j, since different

providers serve different populations.

Regimes of Interest. While our primary result on the performance of the RMEstimator (Theorem 1

in §4.1) is general with respect to the sample sizes {nj}Nj=1, we will find it useful to interpret

the implications under two intuitive regimes. The first is the “standard” regime where all tasks

have roughly similar numbers of observations (i.e., nj = Θ(nj′) = Θ(n/N) for any j, j′ ∈ [N ], where

n =
∑

j∈[N ] nj). However, in some settings, some service providers may receive substantially less

traffic than others (e.g., a rural hospital in Example 1 or a relatively small store in Example 2).

Thus, we also consider the limit where some task j ∈ [N ] is relatively “data-poor”, receiving far

less traffic than other tasks (i.e., nj = Θ(n′j/d
2) for any j′ 6= j); we refer to this as the “data-

poor” setting (Theorem 2 in §4.2). We focus on a single data-poor task for simplicity; our results

generalize straightforwardly to the case where there are a constant number of data-poor tasks.

3. Robust Multitask Learning

In this section, we overview our robust multitask estimator RMEstimator (§3.2) and provide intu-

ition for its design (§3.3). §3.4 illustrates the statistical benefits of our approach relative to intuitive

baselines.
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3.1. Preliminaries

We define and briefly review the trimmed mean estimator from the classical robust statistics litera-

ture (Rousseeuw 1991, Lugosi and Mendelson 2021), which computes the mean of a distribution P
given samples {Zj}j∈[N ]. A typical setting is as follows: most of the samples are i.i.d. (i.e., Zj ∼P),

but a small fraction (indexed by an unknown set J ⊆ [N ]) are “corrupted” and can be arbitrary.

Here, the traditional mean can be arbitrarily biased, but the trimmed mean obtains strong guaran-

tees given a bound on the number of corrupted samples |J |< ζN for some ζ < 1/2. The trimmed

mean estimator first sorts the samples in increasing order to obtain Zj1 ≤ · · · ≤ ZjN , where the

subscript jι is the index of the ιth smallest sample. Then, given a hyperparameter ω > ζ, it removes

the top and bottom ω quantiles or Nω values and takes the mean of the remaining ones — i.e.,

TrimmedMean
(
{Zj}j∈[N ], ω

)
=

1

N(1− 2ω)

N(1−ω)∑
ι=Nω+1

Zjι .

Intuitively, this estimator is robust since either the corruptions are among the deleted values, or

they are sufficiently close to the true mean that they do not significantly affect the estimate.

3.2. Algorithm Description

Our robust multitask estimator is summarized in Algorithm 1. At a high level, the first step com-

bines high-variance ordinary least squares (OLS) estimators across instances using robust statistics

to estimate the shared parameter β† (up to O(s) deviations in `0 norm); then, the second step uses

LASSO regression to debias this estimate for each task j ∈ [N ].

Algorithm 1 Robust Multitask Estimator (RMEstimator)

Inputs: λ,ω

Initialize λj = λ/
√
nj

for j ∈ [N ] do

Let β̂jind = (Xj>Xj)−1X>Yj be the OLS estimator for task j

end for

for i∈ [d] do

Let β̂†RM,(i) = TrimmedMean({β̂jind,(i)}j∈[N ], ω) be the element-wise trimmed mean

end for

for j ∈ [N ] do

Compute β̂jRM = arg minβ

{
1
nj
‖Xjβ−Yj‖22 +λj‖β− β̂†RM‖1

}
end for

Outputs: {β̂jRM}j∈[N ]

In more detail,
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• Step 1 (Estimating β†): We compute the usual OLS estimator

β̂jind = (Xj>Xj)−1Xj>Yj

for each task j ∈ [N ] independently. Then, we combine these estimates using the element-wise

trimmed mean to estimate the shared parameter vector β̂†RM ≈ β† — i.e., for each i∈ [d],

β̂†RM,(i) = TrimmedMean
(
{β̂jind,(i)}j∈[N ], ω

)
, (2)

where ω > 0 is the trimming hyperparameter that we specify later. (Recall that the subscript (i)

represents the ith entry of the vector.)

• Step 2 (Estimating βj) : Next, we use LASSO regression to compute β̂jRM, leveraging our

assumption that the instance-specific bias term βj −β† is sparse:

β̂jRM = arg min
β

{
1

nj
‖Xjβ−Yj‖22 +λj‖β− β̂†RM‖1

}
3.3. Design Intuition

We now provide intuition for our design choices relative to alternative strategies; the corresponding

error rates are summarized in Table 1 (see §3.4 for precise definitions and more details).

Estimator Estimation Error Bound Type
Standard Regime Data-Poor Regime

Independent β̂jind
d√
nj

d√
nj

Lower

Averaging β̂javg or Pooling β̂jpool ‖δj‖1 + d√
Nnj

‖δj‖1 + 1√
Nnj

Lower

Averaging Multitask β̂jAM
min{Ns,d}
√
nj

+ d√
Nnj

min{Ns,d}
√
nj

Lower

Robust Multitask β̂jRM

√
sd
nj

+ d√
Nnj

s√
nj

Upper

Table 1 Comparison of parameter estimation error supG E
[
‖β̂j −βj‖1

]
(see §3.4 for the precise definitions of

these estimators); constants and logarithmic factors are omitted for clarity. The upper bound for our robust

multitask estimator outperforms the worst-case lower bounds for intuitive baseline estimators under the same set

of problem settings G; our improvement is largest for data-poor tasks.

One strategy is to simply use the independent OLS estimator β̂jind (from Step 1) to estimate

βj; this is an unbiased estimator, but has very high variance since it only uses the limited data

observed in task j and does not leverage shared structure across instances. As a result, it has high

error when nj is small (see Table 1).

An alternative strategy is to estimate the shared model β† using data across instances, e.g., the

averaging estimator takes the model average of the independent estimators:

β̂javg =
1

N

∑
i∈[N ]

β̂iind.
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This estimator has low variance since it leverages data across tasks, but it is biased since it does not

account for the task-specific idiosyncratic bias term δj = βj − β†. Similarly, estimating the shared

model β† through OLS on data pooled across instances suffers the same drawbacks. As shown in

Table 1, the error of such estimators never approaches zero due to the bias term δj.

Thus, a natural two-step strategy to achieve low variance and low bias is to first compute an

estimate β̂† of the shared parameter, and then try to debias it to estimate βj. Since the bias βj−β†

is s-sparse by assumption, it should intuitively be easier to debias β̂† than to directly estimate βj.

Along these lines, consider the following averaging multitask estimator, denoted by the subscript

AM. Here, we estimate the shared parameter via model averaging, β̂†AM = β̂javg. Then, we use an `1

penalty on β− β̂†AM (i.e., LASSO regression) on data from instance j to debias β̂†AM:

β̂jAM = arg min
β

{
1

nj
‖Xjβ−Y j‖22 +λj‖β− β̂†AM‖1

}
. (3)

(Note that this strategy is identical to Algorithm 1, except it uses the traditional mean instead of

the trimmed mean in Step 1.) To see why equation (3) helps, suppose we had a perfect estimate

of the shared model β̂†AM = β†; then, βj − β̂†AM would be s-sparse, in which case LASSO requires

exponentially fewer observations for recovering βj (relative to β̂†AM) than traditional OLS.

The issue with the approach outlined above is that βj − β̂†AM is not s-sparse, or even “close” to

being s-sparse. To illustrate, we can decompose

βj − β̂†AM = βj −β†︸ ︷︷ ︸
s-sparse

+β†− β̃†AM︸ ︷︷ ︸
(Ns)-sparse

+ β̃†AM− β̂
†
AM︸ ︷︷ ︸

not sparse but small

, where β̃†AM =
1

N

∑
j∈[N ]

βj (4)

Here, β̃†AM is the value that β̂†AM converges to as nj →∞ for all j ∈ [N ]. Note that β̂†AM does not

converge to β†; in fact, as noted in the problem formulation, β† is not identifiable. The first term

in the decomposition is sparse, and the third term becomes small as n=
∑

j∈[N ] nj becomes large

(since β̂†AM effectively uses all n samples to estimate β̃†AM); since LASSO can effectively recover

parameters that are approximately sparse, these two terms are not problematic. The key issue is

the second term:

δ̃†AM = β̃†AM−β† =
1

N

∑
j∈[N ]

(βj −β†) =
1

N

∑
j∈[N ]

δj,

which is neither sparse nor small. This is illustrated in Figure 3: since the support of the different

bias terms {δi}i∈[N ] can be “poorly-aligned” (i.e., the idiosyncrasies for each task affect a different

subset of features), the average across instances can result in δ̃†AM having as many as min{Ns,d}
nonzero components (even as nj →∞ for all j ∈ [N ]). This in turn implies that βj − β̂†AM is not

sparse even for moderate values of N such as N = Ω(d/s); thus, we cannot use LASSO to efficiently

debias β̂†AM. Other classical estimators of the shared parameter (e.g., data pooling) suffer the same

issue.
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Figure 3 Illustration of Step 1 of our robust multitask estimator for debiasing data collected from multiple

instances. Blue squares depict the support; the shade of blue depicts the magnitude. Ipoor represents the index set

which can be debiased using the trimmed mean across instances, while Iwell represents the index set which can be

debiased using a subsequent LASSO regression for the target instance.

Remark 2. Recall Figure 2, mapping the estimated bias terms {δ̂i}i∈[N ] from electronic medical

record data for diabetes prediction (Example 1). Indeed, we observe that {δ̂i}i∈[N ] are “poorly-

aligned” (i.e., share support on different subsets of features), similar to the illustration in Figure 3.

Our robust multitask estimator addresses this issue by using the trimmed mean β̂†RM in Step 1;

we will show that this converges to a value β̃†RM (as nj→∞ for all j ∈ [N ]) such that

δ̃†RM = β̃†RM−β† = TrimmedMean
(
{βj}j∈[N ]−β†, ω

)
= TrimmedMean

(
{δj}j∈[N ], ω

)
is O(s)-sparse. In particular, we have the following decomposition:

βj − β̂†RM = βj −β†︸ ︷︷ ︸
s-sparse

+β†− β̃†RM︸ ︷︷ ︸
O(s)-sparse

+ β̃†RM− β̂
†
RM︸ ︷︷ ︸

not sparse but small

. (5)

As discussed above, the third term becomes small as n becomes large. Since the second term δ̃†RM

is O(s)-sparse, βj − β̂†RM is approximately O(s)-sparse; thus, LASSO can efficiently debias β̂†RM.

We now use a counting argument to illustrate why δ̃†RM is O(s)-sparse. As Figure 3 illustrates,

we can separate the components i ∈ [d] into two groups: ones that are “well-aligned” (i ∈ Iwell)

and ones that are “poorly-aligned” (i∈ Ipoor); see Definition 2 below. A poorly-aligned component

i is one where very few tasks j ∈ [N ] are biased in this component, i.e., βj(i) 6= β†(i). Intuitively,

for each such component, the trimmed mean estimator treats these biased tasks as “corruptions”

to our samples {βj(i)}j∈[N ], and trims them (with high probability) when computing the average

to obtain an unbiased estimate of β†(i). On the other hand, well-aligned components may remain

arbitrarily biased. However, the pigeonhole principle implies that there cannot be many well-aligned

components; thus, these components (in addition to the components affected by the sparse task-

specific bias term) can be efficiently debiased by LASSO in Step 2. We now formalize this.
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Definition 2 (Well- and poorly-aligned components). Given a constant ζ ∈ [0,1], a

component i∈ [d] is ζ-poorly-aligned (denoted i∈ Iζpoor) if

|{j ∈ [N ] | βj(i) 6= β†(i)}|
N

< ζ.

Otherwise, it is ζ-well-aligned (denoted i∈ Iζwell).

In other words, a component i is ζ-poorly-aligned if at most ζ fraction of the N tasks satisfy

βj(i) 6= β†(i). Now, Step 1 constructs an estimator β̂†RM of β† that converges to

β̃†RM,(i) =

{
β†(i) if i∈ Iζpoor

unspecified if i∈ Iζwell

as the sample sizes {nj}j∈[N ] become large. That is, we aim to correctly estimate all the poorly-

aligned components, but the well-aligned components can be anything. We estimate each compo-

nent β†(i) using the trimmed mean, which is robust to a small fraction ζ of arbitrarily corrupted

samples. For a given component i, let the corresponding corrupted tasks be

Ji = {j ∈ [N ] | βj(i) 6= β†(i)}.

By definition, for i ∈ Iζpoor, we have |Ji|<Nζ. Thus, we can use the trimmed mean estimator to

estimate β†(i):

β̂†RM,(i) = TrimmedMean
(
{β̂jind,(i)}j∈[N ], ω

)
for some ω > ζ. This strategy ensures that β̂†RM,(i) ≈ β

†
(i) for each poorly-aligned component as

desired. Now, note that there can only be a few well-aligned components. In particular, out of

the Nd total components in {βj(i)}j∈[N ], there are at most Ns components where βj(i) 6= β†(i) as a

consequence of our sparse heterogeneity assumption. Then, by the pigeonhole principle, we have

|Iζwell| ≤
Ns

Nζ
=
s

ζ
. (6)

In other words, there are at most s/ζ well-aligned components, so δ̃†RM is O(s)-sparse as desired

(for a constant choice of ζ). Thus, we can efficiently debias our estimate using LASSO in Step 2.

For simplicity, we will use Ipool and Iwell to represent Iζpool and Iζwell in the following whenever no

ambiguity is raised.

3.4. Comparison with Baselines

With the intuition from §3.3 in hand, we now formalize the results for the baseline estimators in

Table 1. In particular, we contrast the upper bound of our estimator (that we will derive in §4.1)

with lower bounds of these baselines. The proofs are provided in Appendix B.
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We characterize the estimation error of an estimator β̂j through the following loss function:

`(β̂j, βj) = sup
G

E
[
‖β̂j −βj‖1

]
, (7)

where G = {{Xj}j∈[N ],{βj}j∈[N ],{Pjε }j∈[N ]} is the set of problem instances that satisfies our fixed

design formulation in (1) and has positive-definite sample covariance matrices {Σ̂j}j∈[N ] (see

Assumption 1 in §4.1), ensuring that the independent OLS estimators are well-defined. Pjε is the

distribution of the subgaussian noise εj; the expectation is taken with respect to the distribution

Pjε . This choice of G ensures that our upper and lower bounds are with respect to the same class

of problem instances. We consider the following estimators:

• Independent OLS: This is the OLS estimator β̂jind = (Xj>Xj)−1X>Yj trained on data only

from task j; it does not transfer information or perform any learning across tasks.

Proposition 1. The estimation error of the independent estimator in both the standard and

data-poor regimes satisfies

`(β̂jind, β
j) = Ω

(
d
√
nj

)
.

• Averaging & Pooling: The averaging estimator β̂javg = 1
N

∑
i∈[N ] β̂

i
ind is a common approach

that averages the independent OLS estimates across tasks to reduce variance (see, e.g., Dobriban

and Sheng 2021); the pooling estimator β̂jpool =
(∑

i∈[N ] X
i>Xi

)−1 (∑
i∈[N ] X

i>Yi
)

pools data

across tasks and then train a single OLS estimator (see, e.g., Crammer et al. 2008, Ben-David

et al. 2010). Note that both two estimators do not vary across instances j’s. The pooling estimator,

different from the averaging estimator, accounts for differences in the sample covariance matrices

Σ̂j = Xj>Xj/nj across instances.

Proposition 2. The estimation error of the averaging (pooling) estimator in the standard

regime satisfies

`(β̂javg, β
j) = Ω

(∥∥δj∥∥
1

+
d√
Nnj

)
,

and in the data-poor regime satisfies

`(β̂javg, β
j) = Ω

(∥∥δj∥∥
1

+
1√
Nnj

)
.

• Averaging Multitask: This two-step estimator β̂jAM is described in detail in §3.3. It is an

ablation of our robust multitask estimator that uses the traditional mean rather than the trimmed

mean in Step 1. The proof follows a LASSO lower bound argument as in Theorem 7.1 of Lounici

et al. (2011), where λj takes the value chosen to upper bound the estimation error. The lower

bound on the error of this estimator demonstrates the importance of robustness.
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Proposition 3. Let the hyperparameter λj =

√
32(1+D0)σ2

j log(4d)

nj
for some constant D0 ≥ 3.

Then, the estimation error of the averaging multitask estimator in the standard regime satisfies

`(β̂jAM, β
j) = Ω̃

(
min{Ns,d}
√
nj

+
d√
Nnj

)
,

and in the data-poor regime satisfies

`(β̂jAM, β
j) = Ω̃

(
min{Ns,d}
√
nj

)
.

As shown in Table 1 (and proven in the next section), the upper bound of our RMEstimator

outperforms the lower bounds of these estimators by leveraging sparse heterogeneity.

4. Theoretical Guarantees for Multitask Learning

Next, we prove performance guarantees for the RMEstimator under both fixed (§4.1) and random

(§4.3) design; the statistical benefits of our approach are magnified for data-poor tasks (§4.2). We

extend the RMEstimator to several settings of interest, including robustly learning in the presence

of some “outlier” tasks (§4.4), under generalized linear models (§4.5), and when we must choose a

subset of similar tasks on which to share learning (§4.6).

4.1. Main Result

Our fixed design result holds under the standard assumption that the sample covariance matrices

{Σ̂j}j∈[N ] are positive-definite (Hastie et al. 2009), i.e., the OLS estimator is well-defined for each

task. (We will subsequently relax this assumption for random designs and for data-poor tasks.)

Assumption 1 (Positive Definiteness). There exists a constant ψ > 0 such that, for any

instance j ∈ [N ], we have λmin(Σ̂j)≥ψ.

We first show an intermediate result on the error of the trimmed mean estimator (Step 1 of our

RMEstimator) for N data samples, of which ζ fraction may be arbitrarily corrupted.

Proposition 4. Suppose we are given N samples {Zj}j∈[N ] and a subset J ⊆ [N ] of size

|J | < ζN with 0 < ζ < 1/2, such that {Zj}j∈J c are independent σj-subgaussian random vari-

ables with equal means µ = E[Zj] and {Zj}j∈J can be arbitrarily corrupted. Then, letting µ̂ =

TrimmedMean({Zj}j∈[N ], ω) with ω= ζ + η, we have

P
[
|µ̂−µ| ≥C0 max

j∈J c
σj (3ζ + 4η)

√
log(

3

η
)

]
≤ 3exp

(
−Nη

2

9

)
,

for any 0< η≤ 1/2− 1/C0− ζ with some constant C0 > 2.
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The proof is provided in Appendix A.1. We use this result to show that β̂†RM,(i) is close to the true

mean β†(i) for poorly-aligned components i ∈ Iζpoor. This result is similar to classical results from

robust statistics (see, e.g., Li 2019), but existing results typically assume that the uncorrupted

samples are i.i.d. (see, e.g., Li 2019, Lugosi and Mendelson 2021), whereas we only require inde-

pendence (since we wish to apply it to {β̂jind,(i)}j∈[N ], which might not be identically distributed).

As described in (5) in §3.3, the remainder term βj− β̂†RM is approximately sparse, allowing us to

use the LASSO estimator (Step 2 of the RMEstimator) to efficiently recover each task-specific βj.

This yields our main error bound for the RMEstimator:

Proposition 5. Under Assumption 1, the estimator β̂jRM satisfies

‖β̂jRM−βj‖1 ≤
6λjs

ζψ
+C0d (3ζ + 4η)max

i∈[N ]

√
σ2
i

niψ
log(

3

η
)

with at least probability 1 −
(

3d exp
(
−Nη2

9

)
+ 2d exp

(
−λ2

jnj

32σ2
j

))
, for any λj > 0, 0 < η ≤ 1/2 −

1/C0− ζ and 0< ζ < 1/2 with some constant C0 > 2.

We provide a proof in Appendix A.2. Proposition 5 holds generally for any choice of regularization

parameter λj, but we can choose it to minimize the error bound.

To better interpret the resulting implications, as discussed in §2, we consider a “standard” regime,

where all tasks have roughly similar sample sizes, i.e., nj = Θ(nj′) = Θ(n/N) for any j, j′ ∈ [N ],

where n=
∑

j∈[N ] nj. Under this regime, we have the following theorem for any instance j:

Theorem 1. Under Assumption 1, the estimator β̂jRM satisfies

‖β̂jRM−βj‖1 =Õ

(√
sd

nj
+

d√
Nnj

)
,

with at least a probability of 1 − δ for any δ ≥ exp
(
−N

9
(C0−2

4C0
)2 + log(6d)

)
with some constant

C0 > 2, for appropriate choices of hyperparameters ζ, η, and λ provided in Appendix A.2.

The proof is provided in Appendix A.2, and follows essentially from Proposition 5. It is useful

to compare the bound above with that of a single task j in the same setting, but which does

not leverage knowledge sharing with other simultaneous tasks. Recall that the independent OLS

estimator β̂jind on task j yields an estimation error of O(d/
√
nj). In contrast, if the number of

tasks is at least N = Ω(d/s), our robust multitask estimator has an estimation error of at most

Õ
(√

sd/nj

)
with high probability, i.e., it improves the upper bound by a factor of

√
d. This can be

a substantial improvement in high dimension (large d) and underscores the value of learning across

tasks. When we have very few tasks from which to share knowledge (i.e., N = o(d)), multitask

learning is still effective; in the worst case, we obtain the same estimation error as the independent

OLS estimator. As we show in §6, we obtain improved empirical results in practice even for modest

values of N . As we will discuss in §4.2, our improvement is much larger in the data-poor regime.
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Remark 3. In Appendix A.8, we show minimax lower bounds that are tight for the data-poor

regime, but slightly loose (by a factor of O(
√
d/s)) in the standard regime.

4.2. Data-Poor Regime

As discussed earlier, multitask learning is especially effective for data-poor tasks, since shared

learning can substantially reduce variance in estimation. To illustrate, we consider a task j which

has roughly a factor of d2 fewer observations — i.e., nj = Θ(nj′/d
2) for any j′ 6= j. Note that the

data-poor task resides in a high-dimensional setting (since nj � d), and therefore is unlikely to

satisfy Assumption 1 on positive-definiteness. Thus, we replace it with the weaker compatibility

condition — a standard assumption in the high dimensional literature (Bühlmann and Van De Geer

2011) — which only imposes positive-definiteness in a restricted subspace containing βj.

Definition 3. Define the set of matrices for a set S and a parameter ψ > 0 as

C(S,ψ) = {Σ∈Rd×d | |S|v>Σv≥ψ‖vS‖21,∀‖vSc‖1 ≤ 7‖vS‖1}.

Assumption 2 (Compatibility Condition). There exists a constant ψ > 0 such that, for the

data-poor task j, we have Σ̂j ∈ C(Īj,ψ), where Īj = Iwell ∪Ij with Ij = {i∈ [d] | βj(i) 6= β†(i)}.

Remark 4. We also make a minor modification to Algorithm 1 in the data-poor regime: we

omit the data-poor task j from the trimmed mean in Step 1 since β̂jind has very high variance. This

outcome can also be achieved by increasing the value of the trimming hyperparameter ω.

With this modification, we have the following theorem for a data-poor task j:

Theorem 2. Under Assumption 2 for the data-poor task j and Assumption 1 for all other tasks

i 6= j, the estimator β̂jRM satisfies

‖β̂jRM−βj‖1 =Õ
(

s
√
nj

)
,

with at least a probability of 1− δ for any δ ≥ exp
(
−N−1

9
(C0−2

4C0
)2 + log(6d)

)
with some constant

C0 > 2, for appropriate choices of hyperparameters ζ, η, and λ provided in Appendix A.3.

The proof is provided in Appendix A.3, and is similar to that of Theorem 1. For the data-poor task,

our estimation error depends only logarithmically on the feature dimension d (as opposed to linearly

for independent OLS). In other words, the RMEstimator exponentially reduces the estimation error

(see Table 1), which is especially valuable in data-poor problems.

It is worth noting that the error of task j scales as if the parameter βj is s-sparse. However,

our parameters are not sparse, i.e., ‖βj‖0 = d. Rather, we achieve this scaling as a consequence of

multitask learning. When related tasks are data-rich, they provide a good estimate of the shared

model β†, which allows us to substantially reduce the dimensionality of our estimation problem

by focusing on learning only the task-specific bias term (which is sparse) rather than βj (which is

dense). This intuition aligns with similar settings considered in Bastani (2021), Xu et al. (2021).
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4.3. Random Design

Our main result in §4.1 holds under a fixed design — i.e., the {Xj}j∈[N ] are observed. As discussed

in §2, our results straightforwardly extend to random designs, where each row of Xj is randomly

drawn from a distribution PjX . Now, instead of assuming positive-definiteness for each sample

covariance matrix (Assumption 1), it suffices to only assume it for each true covariance matrix.

Assumption 3 (Positive Definiteness). There exists a constant ψ̃ > 0 such that for any j ∈
[N ] we have λmin(Σj)≥ ψ̃.

Note that, under a random design, we can no longer standardize the features as in (1). Thus, we

also assume that the observed features are bounded.

Assumption 4 (Boundedness). There exists a constant xmax > 0 such that ‖Xi‖∞ ≤ xmax.

Remark 5. The literature on OLS/ridge regression typically assumes a bound on the `2-norm

of the covariate Xi (see, e.g., Hsu et al. 2011, 2012, Zhang 2005, Smale and Zhou 2007). This kind

of assumption can be relaxed using moment or subgaussian conditions (see, e.g., Condition 3 in

Hsu et al. 2011) at the cost of an extra term in the resulting high probability bound.

Now we introduce a variant of Proposition 5 below for the random design setting.

Proposition 6. Under Assumptions 3 and 4, the estimator β̂jRM satisfies

‖β̂jRM−βj‖1 ≤
12λjs

ζψ̃
+C0d (3ζ + 4η)max

i∈[N ]

√
2σ2

i

niψ̃
log(

3

η
) ,

with at least probability 1−
(

3d exp(−Nη2

9
) + 2d exp(− λ2

jnj

32σ2
jx

2
max

) +
∑

i∈[N ] d exp(− ψ̃ni
8dx2

max
)

)
, for any

λj > 0, 0< η≤ 1/2− 1/C0− ζ and 0< ζ < 1/2 with some constant C0 > 2.

The proof is provided in Appendix A.4. Note that this result is nearly identical to Proposition 5

in the fixed design setting, but it holds with a slightly smaller probability to account for the

(unlikely) event that the random design matrices {Σ̂j}j∈[N ] are nearly singular. We primarily use

the random design result to analyze the regret of the RMBandit in §5.

4.4. Robustness Against Outlier Tasks

Thus far, we have assumed that all N tasks are similar; yet, in practice, an unknown fraction ε of

these tasks may be outlier tasks that do not actually contribute to shared learning. We now show

that the RMEstimator is robust to such outlier tasks, and its error degrades gracefully in ε.

In particular, consider a subset J̄ ⊆ [N ] of outlier tasks that do not satisfy our sparse hetero-

geneity assumption, with |J̄ | ≤ εN . Then, for all j ∈ J̄ c, we still have βj = β†+ δj with ‖δj‖0 ≤ s.3

3 This setup is similar to the task relatedness environment in Assumption 4.3 of Duan and Wang (2022), except that
we measure the difference between model parameters in `1 norm instead of `2 norm. However, their proofs rely heavily
on specific properties of the `2 norm, and do not carry over to our setting with the `1 norm.
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Following our analysis in §3.3, the trimmed mean estimator consistently estimates β†(i) for any

components i ∈ Ipoor as long as ζ > ε (see Definition 2). However, we may now have more well-

aligned components due to the presence of εN outlier tasks. Specifically, out of the Nd total

components, there can be at most Ns+ εNd components with βj(i) 6= β†(i) for any non-outlier task

j ∈ J̄ c. By the pigeonhole principle, we then have at most

|Iwell| ≤
N(s+ εd)

Nζ
=
s+ εd

ζ
.

As a result, we have the following corollary for task j in the presence of outlier tasks:

Corollary 1. Under Assumption 1, the estimator β̂jRM satisfies

‖β̂jRM−βj‖1 =

Õ
(√

(s+εd)d

nj
+ d√

Nnj

)
, for j ∈ J̄ c

Õ
(

d√
nj

)
, for j ∈ J̄ ,

with at least probability 1 − δ for any δ ≥ exp

(
−N

9
(C0−2

2C0
(1− 1

2

√
s+2εd/3

d
))2 + log(6d)

)
and ε ≤

1+8C0
√
s/((C0−2)

√
d)

(4C0/(C0−2))2
for some constant C0 > 2 and appropriate choices of hyperparameters ζ, η, and

λ provided in Appendix A.5.

The proof is provided in Appendix A.5. Consistent with our prior results, we obtain an improve-

ment in the context dimension d for non-outlier tasks j ∈ J̄ c. Specifically, the estimation error of

RMEstimator scales as Õ(
√

(s+ εd)d/nj) for a sufficiently large number of tasks N , which is still

smaller than the error of the independent OLS estimator. Yet, we have an additional Õ(
√
εd2/nj)

term, which is slightly weaker compared to Theorem 1, since the presence of outlier tasks adds

noise. Indeed, when ε→ 0 (i.e., there are no outlier tasks) we recover our bound in Theorem 1;

when ε→ 1 (i.e., no tasks can share knowledge), our improvement disappears and the estimation

error converges to that of independent OLS. Lastly, outlier tasks j ∈ J̄ do not share knowledge

with other tasks, and hence also have the same estimation error as independent OLS.

4.5. Generalized Linear Models

Next, we generalize the RMEstimator to generalized linear models (GLMs), which may be more

suitable for classification problems. We show that a natural analog of the RMEstimator that uses a

maximum likelihood estimator (MLE) achieves a similar error bound as Theorem 1.

In GLM, for task j ∈ [N ] with parameter βj, the density of Yi conditioned on features Xi satisfies

p(Yi |Xi, β
j)∝ exp

(
YiX

>
i β

j −A(X>i β
j)
)
,

where the function A :R→R is known (McCullagh and Nelder 1989). From standard properties of

exponential families, A is infinitely differentiable and strictly convex (Brown 1986); without loss of
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generality, we assume A′′ > φm for some constant φm > 0. Under this model, we have E[Yi |Xi] =

A′(X>i β
j) and Var[Yi |Xi] =A′′(X>i β

j), where A′ and A′′ are the first and second derivatives of A,

and A′ is called the inverse link function. For example, A′(x) = 1/(1 + exp(−x)) and Yi is binary

for logistic regression, and A′(x) = x and Yi is continuous in linear regression.

We consider the natural generalization of the RMEstimator from the linear setting in §3.2, replac-

ing both the OLS estimator in Step 1 and the LASSO regression in Step 2 with MLE. In detail,

• Step 1 (Estimating β†): For each task j ∈ [N ], we obtain the MLE through

β̂jind = arg min
β

L(β |Xj,Yj), where L(β |Xj,Yj) =
1

nj

∑
i∈[nj ]

−YiX>i β+A(X>i β). (8)

We then estimate the shared parameter β† via the trimmed mean β̂†RM,(i) as in (2).

• Step 2 (Estimating βj) : Then, we apply a LASSO penalty to the MLE to compute β̂jRM:

β̂jRM = arg min
β

L(β |Xj,Yj) +λj‖β− β̂†RM‖1.

We impose a standard regularity condition on the link function (see, e.g., Negahban et al. 2010)

to provide a guarantee on the convergence of the MLE.

Assumption 5 (Bounded Hessian). There exists a constant φM > 0 such that ‖A′′‖∞ ≤ φM .

Then, we obtain the following error bound for the RMEstimator in the GLM setting:

Corollary 2. Under Assumptions 1, 4 and 5, the estimator β̂jRM of a GLM satisfies

‖β̂jRM−βj‖1 =Õ

(√
sd

nj
+

d√
Nnj

)
,

for sufficiently large nj with at least probability 1 − δ for any δ ≥ exp
(
−N

9
(C0−2

4C0
)2 + log(6d)

)
for some constant C0 > 2, and appropriate choices of hyperparameters ζ, η, and λ provided in

Appendix A.6.

We provide a proof in Appendix A.6, which closely follows the linear case, except for the use of

MLE to establish consistency of the trimmed mean and LASSO. The result mirrors Theorem 1.

4.6. Network Structure

In practice, one may have a large number of tasks, and may wish to a choose a subset of size

Ñ ≤N within which to perform multitask learning. On one hand, increasing the number of tasks

Ñ improves estimation of the shared parameter; on the other hand, an increase in Ñ may imply

an increase in the task-specific sparsity parameter s as tasks become increasingly dissimilar.

In Appendix A.7, we assume knowledge of a network that captures the similarity between any

pair of tasks; this can be inferred based on observed covariates (e.g., geographic distance between
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hospitals/stores or socio-economic indices of neighborhoods served) or data from past decision-

making problems (see, e.g., the disparity matrix in Crammer et al. 2008). Then, for any given task,

we can optimize the “similarity radius” of learning problems from which to transfer knowledge.

We consider a simple power scaling for this network, where the effective sparsity parameter of the

selected subset of tasks varies as s̃= min(Ñα, d) for some α≥ 0. In this setting, we find it is optimal

to choose the Ñ = d
1

α+1 most similar tasks; this results in error bounds (see Corollary 3) that scale

with the network density α. Further details and results are provided in Appendix A.7.

5. Robust Multitask Contextual Bandits

We now illustrate the utility of the RMEstimator for online learning via simultaneous multitask

contextual bandits. This section describes the modified model setup and assumptions for the bandit

setting (§5.1 - 5.2), overviews our proposed RMBandit algorithm (§5.3), and demonstrates improved

total and task-specific regret bounds (§5.4), including in the data-poor regime (§5.5).

5.1. Model

Analogous to the formulation in §2, we consider N distinct linear contextual bandit instances. The

decision-maker at each instance has access to K potential arms (decisions) with uncertain and

context-dependent rewards.

Arrivals. Let T be the overall time horizon across all bandit instances. At each time step t, a

new observation arrives at one of the N instances, given by the random variable Zt ∈ [N ] — i.e.,

instance j receives an arrival with probability pj, where
∑N

i=1 pi = 1; thus, Zt follows a categorical

distribution CG(p) with p =
[
p1 · · · pN

]
. In expectation, instance j will have pjT observations.

Again, we consider two regimes: (i) the standard regime where pj = Θ(1/N) for all j ∈ [N ], and

(ii) the data-poor regime where a single instance j has pj = Θ(pj′/d
2) for j′ 6= j. Each observation

has a context Xt ∈Rd; if Zt = j, then Xt is drawn i.i.d. from an unknown distribution PjX .

Rewards. The reward for pulling arm k for an observation with context vector Xt at instance j

is Yt =X>t β
j
k + εt. Here, each arm k at instance j is parameterized by an unknown arm parameter

βjk ∈Rd, and the corresponding noise εt is an i.i.d. σj-subgaussian random variable given Zt = j. We

assume that a given arm satisfies sparse heterogeneity across instances — i.e., there exists β†k ∈Rd

such that βjk = β†k + δjk, where δjk is sparse (i.e., ‖δjk‖0 ≤ s for some s∈N) for all k ∈ [K], j ∈ [N ].

Performance. We want a sequential policy π that learns the arm parameters {βjk}k∈[K],j∈[N ] over

time, in order to maximize expected reward for each arrival. The overall policy π is composed

of sub-policies πjt : X j → [K] at each instance j; we use πt to represent the arm played at time

t. We measure the performance of π by its cumulative expected regret (Lai and Robbins 1985),

modified to extend across multiple heterogeneous bandit instances. In particular, when Zt = j (an

observation arrives at instance j), we compare ourselves to the oracle policy πj∗ at instance j,
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which knows the arm parameters {βjk}k∈[K] in advance. Naturally, πj∗ chooses the arm with the

best expected reward, i.e. πj∗(Xt) = arg maxk∈[K]X
>
t β

j
k for any Xt. The expected regret incurred

by pulling arm πt = k at time t given an arrival at instance j is thus

rjt =E
[

max
k′∈[K]

(X>t β
j
k′)−X

>
t β

j
k

∣∣∣∣Zt = j

]
,

which is simply the difference between the expected reward of using πj∗ and πjt . Further taking the

expectation over the randomness where the observation arrives, the expected regret of an overall

policy composed of sub-policies {πjt}j∈[N ] at time t is rt =
∑

j∈[N ] P [Zt = j] rjt =
∑

j∈[N ] pjr
j
t . Our

goal is to derive a policy that minimizes the cumulative expected regret RT =
∑T

t=1 rt across all

instances; we also study the instance-specific cumulative regret Rj
T =

∑T

t=1 pjr
j
t for each j ∈ [N ].

5.2. Assumptions

As discussed earlier, we embed our robust multitask estimator into the linear contextual bandit

setting studied in Goldenshluger and Zeevi (2013), Bastani and Bayati (2020); therefore, our next

four assumptions are directly adapted from this literature.

First, we have a standard assumption that the features and arm parameters are bounded.

Assumption 6 (Boundedness). There exist constants xmax > 0 and b > 0 such that ‖X‖∞ ≤

xmax for any X ∈X j, j ∈ [N ] and ‖βjk‖1 ≤ b for any k ∈ [K], j ∈ [N ].

Our second assumption is that, for each instance j ∈ [N ], the K arms can be split into two

mutually exclusive sets: (i) optimal arms k ∈Kjopt that are strictly optimal in expected reward (by at

least h) for any contexts drawn from a set U j
k ⊆X j with positive support on PjX , or (ii) suboptimal

arms k ∈ Ksub that are strictly suboptimal in expected reward (by at least h) for all contexts in

X j. In other words, we assume that every arm is either optimal for at least some individuals, or

suboptimal for all individuals. This assumption ensures that every arm in Kjopt will roughly receive

at least p∗pjT samples and quickly learn accurate parameters under a regret-minimizing policy.

Assumption 7 (Arm Optimality). All K arms at any given instance j belong to one of two

mutually exclusive sets: Kjopt of optimal arms or Kjsub of suboptimal arms. There exists some h> 0

such that: (i) each k ∈ Kjsub satisfies X>βjk < maxk′ 6=kX
>βjk′ − h for any X ∈ X j, and (ii) each

k ∈Kjopt is optimal on a set

U j
k = {X ∈X j |X>βjk >max

k′ 6=k
X>βjk′ +h},

with positive measure, i.e., P
[
X ∈U j

k |Z = j
]
≥ p∗ for some constant p∗ > 0.
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Our third assumption ensures that linear regression is feasible within the set U j
k ; this is a mild

assumption since it is with respect to the true covariance matrix, which only requires that no

features are perfectly collinear in this set. In contrast, the sample covariance matrix may not be

positive-definite at time t, if we have observed too few samples from that instance.

Assumption 8 (Positive Definiteness). For any arm k ∈ [K] and instance j ∈ [N ], the true

covariance matrix Σj
k =E[XX>|X ∈U j

k ,Z = j] satisfies λmin

(
Σj
k

)
≥ψ for some constant ψ > 0.

Our fourth assumption is a margin condition that ensures that the density of the context distri-

bution PjX for each instance j is bounded near a decision boundary (i.e., the hyperplane given by

{X ∈X j |X>βjk′ =X>βjk} for any pair k′ 6= k). It allows for any bounded, continuous features, as

well as any discrete features with a finite number of values.

Assumption 9 (Margin Condition). For any arms k and k′ of any instance j ∈ [N ], there

exists a constant L> 0 such that P
[
|X>(βjk−β

j
k′)| ≤ κ |Z = j

]
≤Lκ for any κ> 0.

Remark 6. Our regret bounds straightforwardly extend under a more general α-margin condi-

tion (see, e.g., Bastani et al. 2021a), as shown in Appendix D.3.

The assumptions thus far are standard and have been adapted directly from the bandit literature.

We now introduce a new assumption motivated by our multitask setting. In general, an arm k

can be optimal (belong to Kjopt) at one bandit instance j and be suboptimal (belong to Kj
′

sub) at a

neighboring instance j′. This implies that we will observe O(pjT ) samples from arm k at instance

j but only O(log(pj′T )) samples at instance i under a regret-minimizing policy; in other words,

instance j cannot effectively transfer knowledge from instance i about arm k. Thus, we impose

that if an arm k ∈ [K] is optimal for any instance j, it is also optimal for at least some subset of

the other instances so that we have enough observations to enable multitask learning.

Assumption 10 (Optimality Density). The set of bandit instances where arm k is an opti-

mal arm, i.e.,Wk = {j ∈ [N ] | k ∈Kjopt}, has cardinality of either 0 or at least ρN for some constant

ρ> 0 for any k ∈ [K].

5.3. Algorithm Description

Next, we propose the RMBandit algorithm (Algorithm 2), which leverages the RMEstimator to

efficiently learn across N simultaneous linear contextual bandit instances. In this section, we drop

the subscript RM and denote our multitask estimator as simply β̂jk for arm k and instance j.

Following prior work, the RMBandit manages the exploration-exploitation tradeoff using a small

amount (O(log(T ))) of forced random exploration in each instance j ∈ [N ]. Furthermore, for each

instance j and arm k ∈ [K], it trades off between (i) an unbiased forced-sample estimator, which is

trained only on forced random samples, and (ii) a potentially biased all-sample estimator, which is
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trained on all observations for arm k. Instead of using LASSO (Bastani and Bayati 2020) or OLS

(Goldenshluger and Zeevi 2013) for these estimators, we use our RMEstimator.

This introduces two important challenges. First, our multitask estimator leverages data across

instances, which induces (previously absent) correlations among any arm parameter estimates for a

fixed arm k. However, our error bound for the trimmed mean estimator (Proposition 4 - 5) requires

that our OLS inputs across instances into the trimmed mean be independent in order to recover

a reasonable estimate of the shared model β† (see Step 1 of our RMEstimator in §3.2). Thus, we

introduce a new batching strategy, where we only perform parameter updates in batches rather

than after every time step. This ensures that our arm parameter estimates in the current batch are

independent conditioned on the observations from previous batches.4 Importantly, this batching

strategy does not change the convergence rates (and therefore regret), and has the added advantage

of being far more computationally tractable.

Second, our robust multitask estimator requires two hyperparameters: the trimming hyperpa-

rameter ω and the LASSO regularization parameter λ (see Algorithm 1). We specify a trimming

path for ωt to dynamically trade off bias and variance over time, in order to control the conver-

gence of our robust multitask estimators. Intuitively, we trim less for small t (when we have little

data) to reduce variance at the cost of admitting “small” corruptions; as t increases (when we have

collected more data), we trim more aggressively to eliminate even small corruptions that can bias

our estimates. For λt, the path follows that derived in Bastani and Bayati (2020) correspondingly.

In more detail, we split the time horizon T into disjoint sequential batches
⋃
m≥0Bm. The initial

batch B0 has size q log(T ) for some tuning parameter q, and the following batches iteratively double

in length (i.e., the mth batch Bm has size |Bm|= 2m−1|B0|), which yields a total of M batches with

M =

⌈
log2

(
T

q log(T )

)⌉
. (9)

We define Bm̄ =
⋃m

l=0Bl as the union of all the batches up to batch m. We denote our RMEstimator

(Algorithm 1) at instance j for arm k as β̂jk(B, λ, ω), where the first argument indicates the training

sample, i.e., all observations where we pulled arm k in batch B; the remaining arguments are

hyperparameters, i.e., the LASSO regularization parameter λ and the trimmed mean parameter ω.

Strategy. In our initial batch B0, we deterministically forced-sample each arm k of instance j

when an individual is observed at instance j (i.e., when Zt = j). At the end of this initial batch, we

obtain a forced-sample estimator β̂jk(B0, λ0,j, ω0) for each j ∈ [N ] and k ∈ [K]; this forced-sample

estimator remains fixed for the entire time horizon T . On the other hand, we also maintain an

all-sample estimator β̂jk(Bm̄, λ1,j,m̄, ω1,m) for each j ∈ [N ] and k ∈ [K]; this estimator is periodically

4 A formal statement of this claim is provided in Lemma 5 in Appendix C.
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Algorithm 2 Robust Multitask Bandit (RMBandit)

Inputs: ω0, λ0, ζ1,0, η1,0, λ1,0, q, h

Set M =
⌈
log2

(
T

q log(T )

)⌉
, B0 = [q log(T )], and Bm = {t∈ [T ] | 2m−1|B0|< t≤ 2m|B0|} for m∈ [M ]

Initialize λ0,j = λ0/
√
|Bj0|

for t∈ [T ] do

Observe an arrival at instance j =Zt ∼ CG(p), and the corresponding context Xt ∼PjX
if t∈B0 then

Pull arm πt =
(

(
∑

r∈[t] 1(Zr = j)− 1) mod K
)

+ 1

else if t∈Bm then

Let K= {k ∈ [K] |X>t β̂
j
k(B0, λ0,j, ω0)≥maxi∈[K]X

>
t β̂

j
i (B0, λ0,j, ω0)−h/2}

Pull arm πt = arg maxk∈KX
>
t β̂

j
k(B ¯m−1, λ1,j, ¯m−1, ω1,m−1)

end if

Observe reward Yt =X>t β
j
πt

+ εt

if t= |Bm̄| for m∈ [M ] (i.e., when Bm ends) then

Update ζ1,m = ζ1,0, η1,m = η1,0

√
log(dmini∈[N ],|Bim|>0 |Bim|), and ω1,m = ζ1,m + η1,m

Update λ1,j,m̄ = λ1,0

√
log(d|Bjm̄|)/|Bjm̄| for each j ∈ [N ]

end if

end for

re-trained with updated hyperparameters at the end of each batch m and thereby fixed for the

following batch m+ 1. One distinction of this estimator from Algorithm 1 is that the trimmed

mean estimator in Step 1 is built upon only data from Bm such that arm parameter estimates are

independent. However, in Step 2 we still use all the data of the target instance from Bm̄, of which

the samples might be correlated across instances.

The algorithm is executed as follows. If t ∈ Bm and a new arrival is observed at instance j, we

first use the forced-sample estimators to find the highest estimated reward achievable among the

K arms at instance j. These estimates allow us to identify a subset of arms K⊆K whose rewards

are within h/2 of the estimated optimal reward. Then, within this set, we pull the arm k ∈K that

has the highest estimated reward according to the all-sample estimators.

5.4. Regret Analysis

First, Proposition 7 below bounds the total regret across all N bandit instances.

Proposition 7. When N = Ω(log(d) log(T )), the cumulative expected regret of all instances up

to time T of RMBandit satisfies

RT =O
(
Kd(sN + d) log(N) log2(dT/N)

)
,
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for appropriate choices of hyperparameters ω0, ζ1,0, η1,0, λ0, λ1,0, and q provided in Appendix D.1.

We provide a proof strategy in Appendix C, with details relegated to Appendix D.1. Note that we

assume that N is not too small; our approach is designed for problems where there are at least

a few distinct problem instances to enable multitask learning. In §6, we show improved empirical

results even for modest values of N .

Remark 7. The above result is based on our margin condition in Assumption 9. As noted in

§5.2, we consider a more general α-margin condition in Appendix D.3, and derive corresponding

regret bounds that may scale polynomially in T depending on the strength of the assumption.

Next, we consider the regret of RMBandit for a single instance j. To make a direct comparison

to existing regret bounds with time horizon T , we rescale the expected time horizon5 for instance

j to be T as well, i.e., since we expect pj = Θ(1/N) fraction of the total arrivals at instance j, we

scale our total horizon as T/pj = Θ(NT ).

Theorem 3. Consider a total time horizon of T/pj = Θ(NT ), so instance j has expected time

horizon T . When N = Ω(log(d) log(T )), the cumulative expected regret of instance j of RMBandit

satisfies

Rj
T =O

(
Kd (s+ d/N) log(N) log2(dT )

)
,

for appropriate choices of hyperparameters ω0, ζ1,0, η1,0, λ0, λ1,0, and q provided in Appendix D.1.

The proof is provided in Appendix D.1. Prior literature shows that such an instance would achieve

regret that scales as O(d2 log
3
2 (d) log(T )) (Bastani and Bayati 2020). In contrast, our upper bound

on the regret for instance j using RMBandit is smaller by a factor of d, but larger by a factor of

log(T );6 this is a substantial improvement for even a moderate context dimension d. In other words,

by appropriately managing the bias-variance tradeoff over time, the RMBandit achieves analogous

improvements to online learning as we observed with the RMEstimator in offline learning.

5.5. Data-Poor Regime

We now turn to the data-poor regime where we expect magnified benefits to multitask learning

(matching our offline results in §4.2). Let the target instance j be data-poor, i.e., pj = Θ(pj′/d
2) =

Θ(1/(d2N)). Again, to make a direct comparison to existing regret bounds, we rescale our total

horizon as T/pj = Θ(d2NT ), implying an expected time horizon of T for instance j.

5 Note that, given a fixed time horizon across all N instances, the time horizon (i.e., number of observations) for a
single instance j is a random variable since the distribution of arrivals across instances ({Zt}Tt=1) is a random process.

6 The extra factor of log(T ) is likely an analytical limitation that arises because the RMBandit uses LASSO, e.g., the
high-dimensional contextual bandit also attains a regret that scales as log2(T ) (Bastani and Bayati 2020).
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Theorem 4. Consider a total time horizon of T/pj = Θ(d2NT ), so the data-poor instance j has

expected time horizon T . When N = Ω(log(d) log(T )), the cumulative expected regret of instance j

of RMBandit satisfies

Rj
T =O

(
Ks2 log(N) log2(dT )

)
,

for appropriate choices of hyperparameters ω0, ζ1,0, η1,0, λ0, λ1,0, and q provided in Appendix D.2.

We provide a proof in Appendix D.2. The above result shows that RMBandit attains a regret

bound that only scales logarithmically in the context dimension d — i.e., we obtain an exponential

reduction in regret, which is especially valuable in data-poor problems. Note that the regret of

instance j scales as if the arm parameters {βjk} are s-sparse (see, e.g., Bastani and Bayati (2020))

while our arm parameters are dense; this intuition aligns with our offline result in Theorem 2.

6. Experiments

We now illustrate the value of our approach on synthetic and real datasets in both offline and

online learning settings. For experiments on real data, we analyze a patient health risk prediction

task in the offline setting; in the online setting, we focus on two well-studied applications of bandits

— i.e., personalized patient interventions, and dynamic pricing.

6.1. Multitask Learning

We first analyze the efficiency of our RMEstimator in the offline setting. More specifically, we

simulate the following linear regression algorithms: (i) without multitask learning: OLS (Hastie

et al. 2009), LASSO (Tibshirani 1996a), and (ii) with multitask learning: group LASSO (Yuan and

Lin 2006, Lounici et al. 2009), nuclear-norm regularization (Negahban and Wainwright 2011, Pontil

and Maurer 2013), pooling (Crammer et al. 2008, Ben-David et al. 2010) and RMEstimator. The

first two approaches treat each task independently via OLS and LASSO respectively, while the rest

share knowledge across N tasks to learn for the target task through group LASSO regularization,

nuclear-norm regularization, pooling then OLS, and our RMestimator respectively.

Synthetic. Figure 4 compares the prediction error across three different settings of our formu-

lation in §2 with varying N,d and s. Appendix F.1 provides additional details.

We observe that the RMEstimator substantially reduces prediction error across the board under

varying conditions. OLS/LASSO miss out on the opportunity to perform shared learning. Classical

estimators that do perform multitask learning impose structural assumptions that are not met by

our synthetic data (and more importantly, appear unwarranted in the real dataset we study in the

next subsection) and therefore also perform poorly — e.g., pooling ignores task-specific bias, group

LASSO assumes predictive models across tasks are sparse with shared support, and nuclear-norm

regularization postulates a shared latent low-rank structure across tasks.
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(c) N = 15, d= 40, s= 5

Figure 4 Bars depict prediction error of one task averaged over 20 trials, with corresponding 95% confidence

intervals. ‘GLASSO’ is group LASSO, ‘Nuclear’ is nuclear-norm regularization, and ‘RME’ is RMEstimator.

These results are unsurprising since our synthetic data satisfies sparse heterogeneity, so we expect

RMEstimator to outperform other estimators that do not explicitly leverage this structure. The next

experiment examines real electronic medical record data, which may not satisfy our assumptions.

In Appendix G.1, we comprehensively explore the robustness of the RMEstimator against a range

of model parameters (i.e., N , s, ni/nj) and assumptions on the task specific bias terms {δj}j∈[N ]

(their magnitude, alignment of support across tasks, approximate sparsity) through additional

simulations. We find the predictive accuracy of RMEstimator improves with large N , small s, large

ni/nj, and when the support of the task-specific bias terms are either very well- or poorly-aligned.

In Appendix G.2, we further explore variants of the LASSO penalty (e.g., SCAD or MCP) in Step

2 of the RMEstimator and find similar results.

Risk Prediction in Health Data. Diabetes is a leading cause of severe health complications

such as cardiovascular disease, stroke, and chronic kidney disease (Ismail et al. 2021). Thus, there

is significant interest in leveraging machine learning for early detection of (Type II) diabetes, in

order to improve treatment outcomes (Zhang et al. 2020). However, significant evidence shows

that machine learning models trained on one health system can perform poorly on a different

health system (Quiñonero-Candela et al. 2008, Subbaswamy and Saria 2020); this can be due to

dataset shifts such as changes in patient demographics, disease prevalence, measurement timing,

equipment, and treatment patterns. Thus, it is important to train provider-specific risk models.

In this experiment, we use electronic medical record data across N = 13 healthcare providers to

learn a good diabetes risk prediction model for a single provider. After basic preprocessing, we have

approximately 80 patient-specific features constructed from information available before the most

recent visit (e.g., past diagnoses, procedures and medications); our outcome is an indicator variable

for whether the patient was diagnosed with diabetes during the most recent visit. We aim to learn

the best linear classifier, and evaluate different methods based on the diagnosis accuracy over time.

Appendix F.2 provides additional details on the setup. We compare the prediction accuracy over

two of the hospitals in Figure 5, one with 301 unique patients observed during the sample period

and the other with 246 unique patients.
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Figure 5 Bars depict out-of-sample performance measured by AUC at one hospital (averaged over 1,000 trials),

with 95% confidence intervals. Hospitals A and B have 301 and 246 unique patients respectively. ‘GLASSO’

refers to group LASSO, ‘Nuclear’ nuclear-norm regularization, and ‘RME’ our robust multitask estimator.

Figure 5 shows the out-of-sample predictive accuracy (AUC). Once again, we can find that

RMEstimator achieves the best performance, improving over the second best algorithm (independent

OLS) by 3.7% and 8% at Hospitals A and B respectively. The pooling algorithm outperforms OLS

by leveraging more data but is still not competitive with RMEstimator ignoring hospital-specific

heterogeneity. Group LASSO and nuclear-norm regularization perform poorly, suggesting that the

assumptions imposed may be unwarranted in our dataset.

Since this is a classification problem with binary outcomes, in Appendix G.4, we also compare

the logistic regression analog of the RMEstimator with the logistic regression analogs of all the

baseline algorithms. Once again, we find RMEstimator achieves the best performance; yet, in this

specific task, logistic regression does not perform as well as its linear counterpart for all methods.7

6.2. Multitask Bandits

Next, we illustrate the performance of our RMBandit algorithm in the online setting. More specifi-

cally, we simulate the following linear contextual bandit algorithms: (i) without multitask learning:

OLS Bandit (Goldenshluger and Zeevi 2013), LASSO Bandit (Bastani and Bayati 2020), and (ii)

with multitask learning: GOBLin (Cesa-Bianchi et al. 2013), Trace-norm Bandit (Cella et al. 2022),

a pooling bandit algorithm, and RMBandit. The first two approaches operate N independent bandit

instances via either OLS or LASSO. The GOBLin algorithm is a state-of-the-art multitask bandit

algorithm that uses a Laplacian matrix and ridge regression to jointly learn the instances, thereby

`2-regularizing both the parameters and their pairwise differences. It builds upon the OFUL algo-

rithm (Abbasi-Yadkori et al. 2011), which leverages UCB for linear contextual bandits. Besides, we

7 Linear and logistic regression estimates are often highly correlated even when the outcomes are binary, and produce
nearly identical decisions (see, e.g., Pohlman and Leitner 2003); however, linear models are unbiased in small samples,
enabling faster convergence and improved multitask learning in the low-data regime, which may explain our improved
performance with linear classifiers. In practice, one should choose the best predictor based on out-of-sample AUC.
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also implement other multitask bandit algorithms such as Trace-norm Bandit using trace-norm reg-

ularization (i.e., nuclear-norm regularization), a pooling bandit algorithm that pools observations

and then uses OLS Bandit, and our RMBandit algorithm.

Synthetic. Figure 6 shows the expected cumulative regret over time for a single contextual

linear bandit instance under varying N,K,d and s. Appendix F.1 provides additional details.
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(a) N = 30,K = 3, d= 20, s= 2
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(b) N = 10,K = 10, d= 20, s= 2
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(c) N = 15,K = 3, d= 40, s= 5

Figure 6 Cumulative regret of a single linear contextual bandit (averaged over 20 trials); shaded regions show

95% confidence intervals. ‘Trace’ refers to Trace-norm Bandit, and ‘RMB’ our RMBandit algorithm.

Similar to the offline setting, we find that RMBandit significantly outperforms other algorithms

under sparse heterogeneity. The pooling algorithm ignores task-specific heterogeneity, and the

Trace-norm Bandit and GOBLin (which assumes that the arm parameters across instances are close

in `2 norm) impose structure that are not met by our synthetic data. GOBLin performs particularly

poorly, possibly because they also build on the UCB algorithm, which is known to over-explore

compared to the OLS Bandit (see, e.g., Russo et al. 2017, Bastani et al. 2021a); an interesting future

direction is to adapt multitask learning to other bandit algorithms such as Thompson Sampling.

Appendix G.5 explores the robustness of RMBandit against hyperparameter choices ω0, ζ1,0, η1,0,

and q. We find that our algorithm’s cumulative regret is robust across specifications, which is

important in practice where these hyperparameters might not be well-specified.

The following two experiments examine real datasets, which may not satisfy our assumptions.

Personalized Intervention in Health Data. Using the same medical data as in §6.1, we

aim to learn a good diabetes intervention model for each single hospital in an online manner.

We consider a simple binary reward that directly evaluates the accuracy of our intervention or

classification of patients, i.e., the reward is 1 if the prediction is correct and 0 otherwise; thus, we

have two arms, i.e., K = 2, in our bandit model that are either to intervene or not intervene on

the patient. We aim to learn the best linear classifier online as patient observations accrue, and

evaluate different methods based on the classification accuracy over time. We compare the fraction

of incorrectly intervened patients over time and show the results of two of the hospitals in Figure 7,
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one with 355 unique patients observed during the sample period and the other with 176 unique

patients. We additionally fit a linear oracle, which leverages all observed data from the provider

in hindsight using a leave-one-out approach, representing the best achievable performance within

a linear model family. Appendix F.2 provides additional details on the setup.
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Figure 7 Lines depict the fraction of incorrect interventions averaged over 50 trials of a linear contextual

bandit, with shaded regions the corresponding 95% confidence intervals. Hospitals A and B have 355 and 176

unique patients respectively. ‘Trace’ refers to Trace-norm Bandit, and ‘RMB’ our RMBandit algorithm.

We observe that RMBandit performs favorably compared to the other baseline algorithms, and

converges to the oracle’s classification accuracy much faster. In particularly, our algorithm is

insignificantly different from the oracle after observing around 150 and 75 patients respectively,

while the other algorithms are all significantly worse than the oracle within the sample period.

Notably, the pooling algorithm has good performance on average in the very early stage, likely since

our algorithm requires at least some initial data to learn heterogeneous structure across hospitals.

Remark 8. Note that any use of randomization in a medical decision-making task typically

requires obtaining patient consent, careful assessment of patient safety under all arms, and other

contextual considerations. Within this framework, patient-facing experiments are regularly con-

ducted to assess whether innovative interventions improve patient outcomes in a cost-effective

way (see, e.g., Volpp et al. 2017, Nahum-Shani et al. 2024). Bandit/adaptive designs can improve

the efficiency (Bastani et al. 2021b) and safety of these experiments (Pallmann et al. 2018).

Dynamic Pricing in Retail Data. Contextual bandit algorithms can also naturally be

extended to solve dynamic pricing problems with unknown demand (Besbes and Zeevi 2009). We

consider such a demand forecasting and price optimization task for food distributors; to this end,

we use a publicly available dataset of orders from a meal delivery company.8

8 https://datahack.analyticsvidhya.com/contest/genpact-machine-learning-hackathon-1/

https://datahack.analyticsvidhya.com/contest/genpact-machine-learning-hackathon-1/
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In this experiment, we use data across N = 20 fulfillment centers, serving between three to eight

thousand orders each during the sample period. There are 19 features including the intercept,

the category and cuisine pertaining to the order, as well as associated promotions. The decision

variable is the (continuous) price for the order; rather than arm parameters, there is a single set

of unknown parameters (per instance) that aims to predict demand/revenue as a function of price

and the observed features. Following the approach of Ban and Keskin (2021), we model the price

elasticity of demand as a linear function of the observed features:

Yt =X>t β
j
0 + pt · (X>t β

j
1) + εt.

Here, {βj0, β
j
1} are the unknown parameters corresponding to instance j; conditioned on an arrival

with context Xt at instance Zt = j, Yt is the observed revenue for the chosen price pt and noise εt.

Regret is measured with respect to an oracle that knows {βj0, β
j
1}Nj=1.

We straightforwardly extend RMBandit and the other baseline bandit algorithms to the dynamic

pricing setting using a batched explore-then-commit strategy employed by Ban and Keskin (2021).

Figure 8 shows the cumulative regret of RMX (our dynamic pricing analog of RMBandit) compared

to other benchmarks including ILQX and ILSX (the LASSO- and OLS-based pricing algorithms

introduced in Ban and Keskin 2021), our dynamic pricing analog of GOBLin and Trace-norm

Bandit. Appendix F.3 provides further details and pseudocode for our dynamic pricing algorithms.
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Figure 8 Lines depict the cumulative regret of a linear contextual bandit averaged over 100 trials, with shaded

regions the corresponding 95% confidence intervals. ‘Trace’ refers to Trace-norm Bandit, and ‘RMX’ our pricing

analog of RMBandit.

We observe that RMX performs favorably compared to the dynamic pricing analogs of the other

baseline bandit algorithms. Thus, our insights on multitask learning carry over analogously to the

dynamic pricing context.
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7. Discussion and Conclusions

Decision-makers frequently want to learn heterogeneous treatment effects across many simulta-

neous experiments. Examples range from learning patient risk across hospitals for personalized

interventions (Bastani 2021, Mullainathan and Obermeyer 2017), learning drug effectiveness across

combination therapies for clinical trial decisions (Bertsimas et al. 2016), learning COVID-19 risk

across travelers for targeting tests (Bastani et al. 2021b), and learning demand across stores for

promotion targeting (Baardman et al. 2020, Cohen and Perakis 2018) or dynamic pricing (Bastani

et al. 2021c). We propose a novel RMEstimator that improves the efficacy of downstream decisions

by learning better predictive models with lower sample complexity in the context dimension d. To

the best of our knowledge, our work proposes the first combination of robust statistics (to learn

across similar instances) and LASSO regression (to debias the results) to yield improved bounds

for multitask learning. In the online learning setting, these problems translate to running simulta-

neous contextual bandit algorithms. To this end, we propose the RMBandit algorithm to effectively

navigate the exploration-exploitation tradeoff across bandit instances, thereby improving regret

bounds in d.

We highlight several features of our proposed approach that make it a particularly attractive

solution. First, it is well known that data limitations result in worse model performance, which in

turn can imply unfair decisions, e.g., in healthcare, such biases disproportionately affect protected

groups or minorities due to limited representative data (Rajkomar et al. 2018). A natural approach

to alleviating unfairness is to improve the performance of our models for data-poor instances (see,

e.g., discussion in Hardt et al. 2016). We show that multitask learning can be especially valuable

in such settings — our approach leverages data from data-rich instances to provide an exponential

improvement in performance for data-poor instances. Thus, we provide one additional tool (among

others) for improving fairness in decision-making.

Second, privacy and regulatory constraints prevent granular data sharing in many applications.

A growing literature on federated learning studies training statistical models over siloed datasets,

while keeping data localized (Li et al. 2020b). While our focus is on multitask learning, our approach

satisfies the constraints of federated learning, since we only require sharing aggregate statistics (in

this case, OLS regression parameters) across instances. All model training is performed locally at

the instance-level and does not require any raw data from other instances.

Third, practical deployment of bandits often precludes real-time updates to the model. For

instance, many individuals may appear for service simultaneously (Schwartz et al. 2017) and there

may be operational constraints or concerns over model reliability (Bastani et al. 2021b). Our

RMBandit algorithm employs a batching strategy that only requires a logarithmic number (in

the time horizon T ) of model updates, while preserving convergence rates (and therefore regret).

Furthermore, it has the added advantage of being far more computationally tractable.
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Appendix A: Multitask Learning

In this section, we provide the proofs of Proposition 4 in §A.1, Proposition 5 and Theorem 1 in §A.2,

Theorem 2 in §A.3, Proposition 6 in §A.4, Corollary 1 in §A.5, and Corollary 2 in §A.6.

A.1. Trimmed Mean Estimator

Proof of Proposition 4 Recall that the indices of the corrupted samples are denoted by J ⊆ [N ] (so

the rest are J c = [N ] \ J ) with |J | < Nζ and ζ < 1/2. By assumption, {Zj}j∈J c are independent and

σj-subgaussian with mean µ respectively. Then, using a Chernoff bound, any uncorrupted sample j ∈ J c

satisfies

P [|Zj −µ| ≥ t]≤ 2 exp

(
− t2

2σ2
j

)
for any t > 0. Letting t=

√
2σ2

j log( 3
η
), it follows that

Zj 6∈
[
µ−

√
2σ2

j log(
3

η
), µ+

√
2σ2

j log(
3

η
)

]
with a probability of at most 2η/3. By Hoeffding’s inequality, we have

P

[∑
j∈J c

1 (Zj 6∈ I)≥ t

]
≤ exp

(
−

2(t−
∑

j∈J c pj)
2

|J c|

)
,

where pj = P [Zj 6∈ I] ≤ 2η/3 and I =
[
µ−maxj∈J c

√
2σ2

j log( 3
η
), µ+ maxj∈J c

√
2σ2

j log( 3
η
)
]
. Taking t =

η|J c|, we have

P

[∑
j∈J c

1 (Zj 6∈ I)≥ η|J c|

]
≤ exp

(
−2η2|J c|

9

)
;

in other words, with a high probability, at most η fraction of J c are outside a neighborhood I around the

mean µ. As a consequence, on the event

V = {
∑
j∈J c

1 (Zj 6∈ I)≤ η|J c|},

at most ζ+η fraction of the N samples are outside the interval I (recall that ζN samples are corrupted). As

a subgaussian distribution might not be symmetric, by trimming the upper and lower ω-quantile of samples

with ω= ζ + η, the remaining ones are guaranteed to fall into I.

Suppose the event V holds. Let {Zjι}
N(1−ω)
ι=Nω+1 denote the samples after trimming and T = {jι}N(1−ω)

ι=Nω+1 the

corresponding index set (jι defined in §3.1). And let U = {j ∈ [N ] |Zj ∈ I} denote the set of samples that lie

in I. Note that T ⊆ U on the event of V from our argument above. Then, we have∣∣∣∣∣∑
j∈T

(Zj −µ)

∣∣∣∣∣=
∣∣∣∣∣ ∑
j∈T ∩U

(Zj −µ)

∣∣∣∣∣≤
∣∣∣∣∣ ∑
j∈T ∩U∩J c

(Zj −µ)

∣∣∣∣∣+
∣∣∣∣∣ ∑
i∈T ∩U∩J

(Zj −µ)

∣∣∣∣∣ . (10)

The first term on the RHS of (10) is upper bounded by∣∣∣∣∣ ∑
j∈T ∩U∩J c

(Zj −µ)

∣∣∣∣∣≤
∣∣∣∣∣ ∑
j∈T c∩U∩J c

(Zj −µ)

∣∣∣∣∣+
∣∣∣∣∣ ∑
j∈U∩J c

(Zj −µ)

∣∣∣∣∣ .



40

As we remove 2(ζ + η) fraction of the samples, we have∣∣∣∣∣ ∑
j∈T c∩U∩J c

(Zj −µ)

∣∣∣∣∣≤ 2(ζ + η)N max
j∈J c

√
2σ2

j log(
3

η
). (11)

Since those samples in J c that lie inside the interval I are independent and bounded, we can apply Hoeffding’s

inequality

P

[∣∣∣∣∣ 1

|J c ∩U|
∑

j∈J c∩U

(Zj −E[Zj | J c ∩U ])

∣∣∣∣∣≥ χ ·max
j∈J c

√
σ2
j log(

3

η
)

]
≤ 2 exp

(
−|J

c ∩U|χ2

4

)
, (12)

for any χ> 0. The truncation on these samples introduces a bias of at most

|E[Zj | J c ∩U ]−µ|=
∣∣∣∣E[(Zj −µ)1(Zj 6∈ I) | J c]

P(Zj ∈ I | J c)

∣∣∣∣≤ E[|Zj −µ|k | J c]1/kP[Zj 6∈ I | J c]1/q

P(Zj ∈ I | J c)
, (13)

where the last inequality uses Hölder’s inequality and k, q are such that 1/k+ 1/q= 1. Recall that P[Zj 6∈ I |
J c]≤ 2η/3. In addition, E[|Zj − µ|k | J c]1/k ≤ e1/eσj

√
k for k ≥ 2 by the property of subgaussian (Rigollet

and Hütter 2015). Taking k= log( 3
2η

), inequality (13) gives

|E[Zj | J c ∩U ]−µ| ≤
8σjη

√
log( 3

2η
)

3− 2η
.

Then, the high probability bound in (12) implies

P

| ∑
j∈J c∩U

(Zj −µ)| ≥ |J c ∩U|

χ ·max
j∈J c

√
σ2
j log(

3

η
) + max

j∈J c

8σjη
√

log( 3
2η

)

3− 2η

≤ 2 exp

(
−|J

c ∩U|χ2

4

)
.

Further setting χ= η and by our assumption η < 1/2, we have

P

[∣∣∣∣∣ ∑
j∈J c∩U

(Zj −µ)

∣∣∣∣∣≥ 5|J c ∩U|ηmax
j∈J c

√
σ2
j log(

3

η
)

]
≤ 2 exp

(
−|J

c ∩U|η2

4

)
. (14)

Combining (11) and (14), it holds with a high probability that∣∣∣∣∣ ∑
j∈T ∩U∩J c

(Zj −µ)

∣∣∣∣∣≤ (2
√

2(ζ + η)N + 5η|J c ∩U|
)

max
j∈J c

√
σ2
j log(

3

η
)

Additionally, the second term on the RHS of (10) has∣∣∣∣∣ ∑
j∈T ∩U∩J

(Zj −µ)

∣∣∣∣∣≤ ζN max
j∈J c

√
2σ2

j log(
3

η
).

Thus, we can write∣∣∣∣∣ 1

|T |
∑
i∈T

Zj −µ

∣∣∣∣∣≤ maxj∈J c σj
(1− 2(ζ + η))N

(√
2(3ζ + 2η)N + 5η|J c ∩U|

)√
log(

3

η
)

≤C0 max
j∈J c

σj (3ζ + 4η)

√
log(

3

η
)

with a high probability, where we use |T | = (1− 2(ζ + η))N , |J c ∩ U| ≤N and η ≤ 1/2− 1/C0 − ζ. Since

|J c ∩U| ≥ (1− η)|J c| on the event V , we have

P

[∣∣∣∣∣ 1

|T |
∑
j∈T

Zj −µ

∣∣∣∣∣≥C0 max
j∈J c

σj (3ζ + 4η)

√
log(

3

η
)

]
≤ 2 exp

(
−Nη

2

8

)
,

where we use |J c| ≥ (1− ζ)N and η+ ζ < 1/2. Together with a union bound on the event V , we have

P

[∣∣∣∣∣ 1

|T |
∑
j∈T

Zj −µ

∣∣∣∣∣≥C0 max
j∈J c

σj (3ζ + 4η)

√
log(

3

η
)

]
≤ 3 exp

(
−Nη

2

9

)
. �
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A.2. Standard Regime

The hyperparameters are

λ= max
i∈[N]

√
32σ2

i log(
4d

δ
), ζ =

C0− 2

4C0

√
s

d
, η=

√
9 log( 6d

δ
)

N
.

Note that λj = λ/
√
nj as in Algorithm 1.

We first provide an estimation error bound of our estimator given arbitrary choices of hyperparameters

(i.e., Proposition 5). We begin with the following lemma.

Lemma 1. Define the event

Hj =

{
2

nj
‖Xj>εj‖∞ ≤

λj
2

}
. (15)

Then, we have

P
[
Hj
]
≥ 1− 2d exp

(
−
λ2
jnj

32σ2
j

)
.

Proof of Lemma 1 For any column i of the design matrix Xj , i.e., Xj

(·,i), we have ‖ 1
√
nj

Xj

(·,i)‖2 ≤ 1. Then,

by Lemma 19, we have

P
[
(Hj)c

]
= P

[
max
i∈[d]

1
√
nj
|Xj>

(·,i)ε
j | ≥

λj
√
nj

4

]
≤ dmax

i∈[d]
P
[

1
√
nj
|Xj>

(·,i)ε
j | ≥

λj
√
nj

4

]
≤ 2d exp

(
−
λ2
jnj

32σ2
j

)
. �

Proof of Proposition 5 At a high level, our model has

Yj = Xj(β†+ δj) + εj = Xj
(

(β†Ipoor
+ β̂†RM,Iwell

) + (β†Iwell
− β̂†RM,Iwell

+ δj)
)

+ εj ,

where βI given an index set I is defined at the beginning of §2, and β†Iwell
− β̂†RM,Iwell

+δj is ((1/ζ+1)s)-sparse

— in particular, letting

Īj = Iwell ∪Ij ,

where Ij = {i∈ [d] | βj(i) 6= β†(i)} are the components of βj that do not equal β†, then we have |Īj | ≤ (1/ζ+1)s.

Intuitively, we can show that β†Ipoor
+ β̂†RM,Iwell

is closely approximated by β̂†RM in Step 1 (i.e., (β̂†RM−β†)Ipoor

is small). Then, we can use LASSO to recover the rest of the parameters, i.e., the sparse vector β†Iwell
−

β̂†RM,Iwell
+ δj , to efficiently estimate βj in Step 2.

First, we show that β̂†RM,Ipoor
approximates β†Ipoor

well. We start by noticing that each OLS estimator

β̂jind = (Xj>Xj)−1Xj>Yj is a subgaussian random vector with mean βj — particularly, the ith component

β̂jind,(i) of β̂jind is (
√
σ2
j /(njψ))-subgaussian. This is because

E[exp(λ(β̂jind,(i)−β
j

(i)))] = E[exp(λ(Xj>Xj)−1
(i,·)X

j>εj)]≤ exp

(
λ2σ2

j ‖(Xj>Xj)−1
(i,·)X

j>‖22
2

)
≤ exp

(
λ2σ2

j

2njψ

)
,

where the last inequality uses Assumption 1 and follows

‖(Xj>Xj)−1
(i,·)X

j>‖22 = (Xj>Xj)−1
(i,i) ≤ λmax

(
(Xj>Xj)−1

)
=

1

njλmin(Σ̂j)
≤ 1

njψ
.

Now consider our robust multitask estimator {β̂jRM}j∈[N] computed by Algorithm 1. Recall that for any

poorly-aligned component i∈ Ipoor, the corresponding corrupted subset of instances is Ji = {j ∈ [N ] | βj(i) 6=
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β†(i)}. By definition of Ipoor, we have |Ji| < ζN < N/2. As the data from different instances are mutually

independent, the vectors {β̂jind}j∈[N] are independent. Thus, we can apply Proposition 4 to the trimmed

mean of {β̂jind}j∈[N], where we use the fact that β̂jind is (
√
σ2
j /(njψ))-subgaussian:

P

[∣∣∣β̂†RM,(i)−β
†
(i)

∣∣∣≥C0 (3ζ + 4η) max
ι∈[N]

√
σ2
ι

nιψ
log(

3

η
)

]
≤ 3 exp

(
−Nη

2

9

)
.

Using a union bound over all i∈ Ipoor, we have

P

[∥∥∥(β̂†RM−β†)Ipoor

∥∥∥
1
≥C0d (3ζ + 4η) max

ι∈[N]

√
σ2
ι

nιψ
log(

3

η
)

]
≤ 3d exp

(
−Nη

2

9

)
. (16)

Next, we show that LASSO can recover βj efficiently in Step 2. The rest of the proof is adapted from the

LASSO analysis in Chapter 6.2 of Bühlmann and Van De Geer (2011). Applying the basic inequality of

LASSO to Step 2 of our algorithm gives

1

nj
‖Xjβ̂jRM−Yj‖22 +λj‖β̂jRM− β̂

†
RM‖1 ≤

1

nj
‖Xjβj −Yj‖22 +λj‖βj − β̂†RM‖1.

Plugging in Yj = Xjβj + εj , and conditioned on Hj in (15), we have

1

nj
‖Xj(β̂jRM−βj)‖22 +λj‖β̂jRM− β̂

†
RM‖1 ≤

2

nj
εj>Xj(β̂jRM−βj) +λj‖βj − β̂†RM‖1

≤ 2

nj
‖Xj>εj‖∞‖β̂jRM−βj‖1 +λj‖βj − β̂†RM‖1

≤ λj
2
‖β̂jRM−βj‖1 +λj‖βj − β̂†RM‖1. (17)

Note that the second term on the LHS has

‖β̂jRM− β̂
†
RM‖1 = ‖(β̂jRM− β̂

†
RM)Īc

j
‖1 + ‖(β̂jRM− β̂

†
RM)Īj‖1

≥ ‖(β̂jRM−βj)Īcj ‖1−‖(β
j − β̂†RM)Īc

j
‖1 + ‖(βj − β̂†RM)Īj‖1−‖(β̂

j
RM−βj)Īj‖1.

Plugging it into (17) and decomposing the two terms on the RHS based on Īj and Īcj , we have

1

nj
‖Xj(β̂jRM−βj)‖22 +

λj
2
‖(β̂jRM−βj)Īcj ‖1 ≤

3λj
2
‖(β̂jRM−βj)Īj‖1 + 2λj‖(β̂†RM−βj)Īcj ‖1. (18)

Since βj − β̂†RM = (β†− β̂†RM)Ipool
+ (β†Iwell

− β̂†RM,Iwell
+ δj), it holds that

‖(β̂†RM−βj)Īcj ‖1 = ‖((β†− β̂†RM)Ipool
)Īc
j
‖1 ≤ ‖(β†− β̂†RM)Ipool

‖1,

where the first equality follows (β†Iwell
− β̂†RM,Iwell

+ δj)Īc
j

= 0, and the second inequality follows Īcj ⊆ Ipool.

With the above result and adding
λj

2
‖(β̂jRM−βj)Īj‖1 on both sides of (18), we obtain

1

nj
‖Xj(β̂jRM−βj)‖22 +

λj
2
‖β̂jRM−βj‖1 ≤ 2λj‖(β̂jRM−βj)Īj‖1 + 2λj‖(β̂†RM−β†)Ipoor‖1. (19)

By Assumption 1, we have

‖(β̂jRM−βj)Īj‖1 ≤
√

(1/ζ + 1)s‖β̂jRM−βj‖2 ≤

√
(1/ζ + 1)s

ψ

1

nj
‖Xj(β̂jRM−βj)‖22. (20)

Therefore, we derive from inequality (19) that

1

2nj
‖Xj(β̂jRM−βj)‖22 +

λj
2
‖β̂jRM−βj‖1 ≤

2(1/ζ + 1)sλ2
j

ψ
+ 2λj‖(β̂†RM−β†)Ipoor‖1,

where we use the fact that 2ab≤ a2 + b2. Since ζ < 1/2, we further get

‖β̂jRM−βj‖1 ≤
6sλj
ζψ

+ 4‖(β̂†RM−β†)Ipoor
‖1.

Combining the above with inequality (16) and Lemma 1, our result then follows. �



43

Now, we prove Theorem 1 by applying Proposition 5.

Proof of Theorem 1 Since δ≤ 1 and d≥ 1, we have√
log(

3

η
) =

√
1

2
log

(
N

log( 6d
δ

)

)
≤
√

log(N).

Plugging our choice of hyperparameters in Proposition 5, we have

‖β̂jRM−βj‖1 ≤
6λjs

ζψ
+C0d (3ζ + 4η) max

i∈[N]

√
σ2
i

niψ
log(

3

η
)

≤ 24s

ζψ

√
2σ2

j log( 4d
δ

)

nj
+ 3C0ζdmax

i∈[N]

√
σ2
i log(N)

niψ
+ 12C0dmax

i∈[N]

√
σ2
i log(N) log( 6d

δ
)

Nniψ
,

with probability at least 1− δ. As ni’s are similar in their scales, it suffices to take ζ = C0−2
4C0

√
s
d

to minimize

the RHS. Thus, we have with high probability

‖β̂jRM−βj‖1 ≤
96C0

(C0− 2)ψ

√
2σ2

j sd log( 4d
δ

)

nj
+

3C0

4
max
i∈[N]

√
σ2
i sd log(N)

ψni
+ 12C0dmax

i∈[N]

√
σ2
i log(N) log( 6d

δ
)

ψNni
.

This holds for any δ≥ exp
(
−N

9
(C0−2

2C0
(1− 1

2

√
s
d
))2 + log(6d)

)
, as we require η≤ 1/2− 1/C0− ζ. �

A.3. Data-Poor Regime

The hyperparameters are

λ= max
i 6=j

√
32σ2

i log(
4d

δ
), ζ =

C0− 2

4C0

, η=

√
9 log( 6d

δ
)

N − 1
.

Note that λj = λ/
√
nj as in Algorithm 1.

We first provide an estimation error bound for a data-poor task given arbitrary choices of hyperparameters.

Proposition 8. The estimator β̂jRM of a data-poor task j satisfies

‖β̂jRM−βj‖1 ≤
6λjs

ζψ
+C0d (3ζ + 4η) max

i6=j

√
σ2
i

niψ
log(

3

η
)

with at least probability 1−
(

3d exp(−Nη2

9
) + 2d exp(−λ2

jnj

32σ2
j
)
)

, for any λj > 0, 0 < η ≤ 1/2− 1/C0 − ζ and

0< ζ < 1/2 with some constant C0 > 2.

Proof of Proposition 8 The proof is similar to that of Proposition 5. We list the details different from

Proposition 5 below.

Applying Proposition 4 to the trimmed mean of {β̂ιind}ι 6=j , we obtain

P

[∥∥∥(β̂†RM−β†)Ipoor

∥∥∥
1
≥C0d (3ζ + 4η) max

ι 6=j

√
σ2
ι

nιψ
log(

3

η
)

]
≤ 3d exp

(
−Nη

2

9

)
. (21)

Then, following the proof steps of Proposition 5 until (18), we have

1

nj
‖Xj(β̂jRM−βj)‖22 +

λj
2
‖(β̂jRM−βj)Īcj ‖1 ≤

3λj
2
‖(β̂jRM−βj)Īj‖1 + 2λj‖(β̂†RM−β†)Ipoor

‖1. (22)

Consider the following two cases separately: (i) ‖(β̂jRM − βj)Īj‖1 ≤ ‖(β̂
†
RM − β†)Ipoor‖1, and (ii) ‖(β̂jRM −

βj)Īj‖1 > ‖(β̂
†
RM−β†)Ipoor

‖1. In the first case, we can obtain directly from inequality (22) that

‖β̂jRM−βj‖1 ≤ 8‖(β̂†RM−β†)Ipoor‖1.
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In the second case, note that we have ‖(β̂jRM − βj)Īcj ‖1 ≤ 7‖(β̂jRM − βj)Īj‖1; thus, given Assumption 2 and

|Īj | ≤ (1/ζ + 1)s, we have

‖(β̂jRM−βj)Īj‖1 ≤

√
(1/ζ + 1)s

ψ

1

nj
‖Xj(β̂jRM−βj)‖22.

Then, we can derive from inequality (22) that

ψ

(1/ζ + 1)s
‖(β̂jRM−βj)Īj‖

2
1 ≤

1

nj
‖Xj(β̂jRM−βj)‖22 ≤

3λj
2
‖(β̂jRM−βj)Īj‖1,

that is,

‖(β̂jRM−βj)Īj‖1 ≤
(1/ζ + 1)s

ψ

3λj
2
≤ 9sλj

4ζψ
,

where the last inequality uses ζ < 1/2. Therefore, we have

‖(β̂jRM−βj)Īj‖1 ≤
9sλj
4ζψ

+ 8‖(β̂†RM−β†)Ipoor
‖1.

Combined the above with (21) and Lemma 1, our result then follows. �

Now, we prove Theorem 2 by applying Proposition 8.

Proof of Theorem 2 Plugging our choice of hyperparameters in Proposition 8, we have

‖β̂jRM−βj‖1 ≤
24s

ζψ

√
2σ2

j log( 4d
δ

)

nj
+ 3C0ζmax

i6=j

√
d2σ2

i log(N)

niψ
+ 12C0 max

i6=j

√
d2σ2

i log(N) log( 6d
δ

)

Nniψ
,

with probability at least 1−δ. Since nj is assumed to be similar to ni/d
2 for any i 6= j in magnitude, choosing

ζ to be any constant smaller than 1/2− 1/C0 suffices to minimize the RHS. Thus, we take ζ = C0−2
4C0

. Then,

with probability at least 1− δ, we have

‖β̂j −βj‖1 ≤
96C0

(C0− 2)ψ

√
2σ2

j s
2 log( 4d

δ
)

nj
+

3C0

4
max
i6=j

√
d2σ2

i log(N)

ψni
+ 12C0 max

i6=j

√
d2σ2

i log(N) log( 6d
δ

)

Nniψ
.

This holds for any δ≥ exp
(
−N−1

9
(C0−2

4C0
)2 + log(6d)

)
, as we require η≤ 1/2− 1/C0− ζ. �

A.4. Random Design

The proof of Proposition 6 straightforwardly follows that of Proposition 5, once accounting for the event

that Assumption 1 holds. To that end, we provide the following lemma under Assumption 3 and 4 that

Assumption 1 holds with high probability.

Lemma 2. We have

P

[
λmin(Σ̂j)≥ ψ̃

2

]
≥ 1− d exp

(
− ψ̃nj

8dx2
max

)
.

Proof of Lemma 2 The proof follows directly Lemma 20 by noting that λmax(XtX
>
t ) ≤ ‖Xt‖22 ≤ dx2

max

and setting t= 1/2 and L= dx2
max in Lemma 20. �

We provide a similar result of random design for a data-poor task j under Assumption 3 and 4 (which is

useful for the coming bandit analysis). First, we show that the compatibility condition in Assumption 2 also

holds with high probability under Assumption 3, a result comparable to Lemma 2.
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Lemma 3. When nj ≥ 3 log(d)/D2
1, we have

P

[
Σ̂j ∈ C(Īj ,

ψ̃

2
)

]
≥ 1− exp

(
−D2

1nj
)
,

where D1 = min
{

1
2
, ζψ̃

768sx2
max

}
.

Proof of Lemma 3 First, note that since λmin(Σj)> ψ̃, we have Σj ∈ C(Īj , ψ̃). This is because, for any

v ∈Rd and S ⊆ [d], we have ‖vS‖1 ≤
√
|S|‖vS‖2. Therefore,

|S|vTΣv≥ |S|ψ̃‖v‖22 ≥ |S|ψ̃‖vS‖22 ≥ ψ̃‖vS‖21.

Then, the result follows by applying Lemma EC.6 in Bastani and Bayati (2020). �

Next, we introduce a variant of Proposition 6 for a data-poor task. The proof straightforwardly follows by

combining Lemma 3 and Proposition 6.

Proposition 9. When nj ≥ 3 log(d)/D2
1, the estimator β̂jRM of data-poor task j satisfies

‖β̂jRM−βj‖1 ≤
12λjs

ζψ̃
+C0d (3ζ + 4η) max

i 6=j

√
2σ2

i

niψ̃
log(

3

η
)

with probability at least 1−
(

3d exp(−Nη2

9
) + 2d exp(− λ2

jnj

32σ2
j
x2

max
) + exp(−D2

1nj) +
∑

i6=j d exp(− ψ̃ni
8dx2

max
)
)

, for

any λj > 0, 0< η≤ 1/2− 1/C0− ζ and 0< ζ < 1/2 with some constant C0 > 2.

A.5. Robustness Against Outlier Tasks

The hyperparameters are

λ= max
i∈[N]

√
32σ2

i log(
4d

δ
), ζ =

C0− 2

4C0

√
s+ 2εd/3

d
, η=

√
9 log( 6d

δ
)

N
.

Note that λj = λ/
√
nj as in Algorithm 1.

Proof of Corollary 1 The proof follows those of Proposition 5 and Theorem 1 closely. We list the details

that differ below.

Remember Īj = Iwell ∪Ij , where Ij = {i∈ [d] | βj(i) 6= β†(i)}. However, now we have |Īj | ≤ (1/ζ + 1)s+ εd/ζ

for j ∈ J̄ c due to εN outlier tasks, and |Īj | ≤ d for any outlier j ∈ J̄ . The proof for any task j ∈ J̄ c is the

same as that of Proposition 5 except for (20). Now by Assumption 1 and |Īj | ≤ (1/ζ + 1)s+ εd/ζ, we have

‖(β̂jRM−βj)Īj‖1 ≤
√

(1/ζ + 1)s+ εd/ζ‖β̂jRM−βj‖2 ≤

√
(1/ζ + 1)s+ εd/ζ

ψ

1

nj
‖Xj(β̂jRM−βj)‖22.

Alternatively, for any j ∈ J̄ , we have Īcj = ∅ since |Īj | ≤ d. Therefore, following the proof steps of Proposition 5

until (18), we have

1

nj
‖Xj(β̂jRM−βj)‖22 +

λj
2
‖(β̂jRM−βj)Īcj ‖1 ≤

3λj
2
‖(β̂jRM−βj)Īj‖1.

Then, by Assumption 1 and |Īj | ≤ d, we have instead

‖(β̂jRM−βj)Īj‖1 ≤
√
d‖β̂jRM−βj‖2 ≤

√
d

ψ

1

nj
‖Xj(β̂jRM−βj)‖22.
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Correspondingly, we get

‖β̂jRM−βj‖1 ≤

{
(6s+4εd)λj

ζψ
+ 4‖(β̂†RM−β†)Ipoor‖1, for j ∈ J̄ c,

4dλj
ψ
, for j ∈ J̄ .

Again combining the above with inequality (16) and Lemma 1, we get a high probability bound of βj . Finally,

given our choice of the hyperparameters and following the proof of Theorem 1, it holds for any j ∈ J̄ c that

‖β̂jRM−βj‖1 ≤
96C0

(C0− 2)ψ

√
2σ2

j (s+ 2εd/3)d log( 4d
δ

)

nj
+

3C0

4
max
i∈[N]

√
σ2
i (s+ 2εd/3)d log(N)

ψni

+ 12C0dmax
i∈[N]

√
σ2
i log(N) log( 6d

δ
)

ψNni
,

and for any j ∈ J̄ that

‖β̂jRM−βj‖1 ≤
16d

ψ

√
2σ2

j log( 4d
δ

)

nj
,

with at least a probability of 1− δ. This holds for any δ≥ exp

(
−N

9
(C0−2

2C0
(1− 1

2

√
s+2εd/3

d
))2 + log(6d)

)
and

ε≤ 1+8C0
√
s/((C0−2)

√
d)

(4C0/(C0−2))2 , as we require η≤ 1/2− 1/C0− ζ and ζ ≥ ε. �

A.6. Generalized Linear Model

The hyperparameters are

λ= max
i∈[N]

√
2φMx2

max log(
4d

δ
), ζ =

C0− 2

4C0

√
s

d
, η=

√
9 log( 6d

δ
)

N
.

Note that λj = λ/
√
nj as in Algorithm 1.

Proof of Corollary 2 Our proof follows closely those of Proposition 5 and Theorem 1. Differently, we

replace the linear regression with the maximum likelihood estimation. For simplicity, we will use L(β) to

represent L(β |Xj ,Yj) in this proof. We list the details different from Proposition 5 as follows.

Denote the Hessian of our our loss function in (8) as ∇2L(β). Given the property of GLM, the asymptotics

of maximum likelihood estimation holds with

√
nj(∇2L(β̂jind))1/2(β̂jind−βj)

d−→N (0, I),

according to Van der Vaart (2000). Therefore, we have

P
[
|β̂jind,(i)−β

j

(i)|> t
]
≤ 2P

[
|N (0, (∇2L(β̂jind))−1

(i,i)/nj)|> t
]
, (23)

for sufficiently large nj by the definition of convergence in distribution. For a fixed design, the Hessian of

our loss function satisfies

∇2L(β) =
1

nj

∑
i∈[nj ]

A′′(X>i β)XiX
>
i ≥ φmΣ̂j (24)

for any β, where we use the strong convexity of A′′ in the last inequality. Then, we can obtain

(∇2L(β̂jind))−1
(i,i) ≤ λmax((∇2L(β̂jind))−1) =

1

λmin(∇2L(β̂jind))
≤ 1

φmψ
,
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where the last inequality uses Assumption 1. Combined with (23) and a Chernoff bound for gaussian distri-

bution (Rigollet and Hütter 2015), we have

P
[
|β̂jind,(i)−β

j

(i)|> t
]
≤ 4 exp

(
−njφmψt

2

2

)
,

that is, β̂jind,(i) is (
√

1/(njφmψ))-subgaussian with mean βj(i).

Then, we follow the same proof steps of Proposition 5 and derive

P
[∥∥∥(β̂†RM−β†)Ipoor

∥∥∥
1
≥C0d (3ζ + 4η) max

ι∈[N]

√
1

nιφmψ
log(

3

η
)

]
≤ 3d exp

(
−Nη

2

9

)
. (25)

Now we apply the LASSO proof technique to the GLM setting as follows. The basic inequality of LASSO is

L(β̂jRM) +λj‖β̂jRM− β̂
†
RM‖1 ≤L(βj) +λj‖βj − β̂†RM‖1. (26)

Using a second-order Taylor expansion and combined with (24), we obtain

L(β̂jRM)−L(βj)−∇L(βj)>(β̂jRM−βj)≥ φm(β̂jRM−βj)>Σ̂j(β̂jRM−βj),

where ∇L(βj) is the gradient of the loss function. Then, following (26), we have

φm(β̂jRM−βj)>Σ̂j(β̂jRM−βj) +λj‖β̂jRM− β̂
†
RM‖1 ≤ ‖∇L(βj)‖∞‖β̂jRM−βj‖1 +λj‖βj − β̂†RM‖1.

To bound ‖∇L(βj)‖∞, we apply Lemma 6 in Negahban et al. (2010) and obtain

P
[
‖∇L(βj)‖∞ ≤

λj
2

]
≥ 1− 2d exp

(
−

λ2
jnj

2φMx2
max

)
, (27)

under Assumption 4 and 5. The rest of the proof again follows that of Proposition 5 by noticing

‖(β̂jRM−βj)Īj‖1 ≤
√

(1/ζ + 1)s‖β̂jRM−βj‖2 ≤

√
(1/ζ + 1)s

ψ
(β̂jRM−βj)>Σ̂j(β̂jRM−βj)

under Assumption 1. Therefore, we finally get

‖β̂jRM−βj‖1 ≤
6sλj
ζψφm

+ 4‖(β̂†RM−β†)Ipoor‖1.

Combining the above with (25) and (27), we get a high probability bound of βj . Finally, given our choice of

the hyperparameters and following the proof of Theorem 1, it holds that

‖β̂jRM−βj‖1 ≤
24C0

(C0− 2)ψφm

√
2φMx2

maxsd log( 4d
δ

)

nj
+

3C0

4
max
i∈[N]

√
sd log(N)

ψφmni
+ 12C0dmax

i∈[N]

√
log(N) log( 6d

δ
)

ψφmNni
,

with at least a probability of 1 − δ. This holds for any δ ≥ exp
(
−N

9
(C0−2

2C0
(1− 1

2

√
s
d
))2 + log(6d)

)
, as we

require η≤ 1/2− 1/C0− ζ. �
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A.7. Network Structure

We analyze the impact of an underlying network structure on the estimation error of βj ’s. We assume knowl-

edge of a network that captures the similarity between any pair of tasks; this can be inferred based on

observed covariates (e.g., geographic distance between hospitals/stores or socio-economic indices of neighbor-

hoods served) or data from past decision-making problems (see, e.g., the disparity matrix in Crammer et al.

2008). Then, for any given task, we can optimize the “similarity radius” of learning problems from which

to transfer knowledge, resulting in error bounds that scale with the underlying network density. Specifically,

we examine error bound as a function of the underlying network structure, where vertices represent tasks

and edges capture their pairwise similarity. This sheds light on choosing the number of tasks Ñ ≤ N for

estimation of each task j, minimizing a bias-variance tradeoff. In other words, as we incorporate more tasks,

we reduce variance (since we have more data) but we increase bias (since we are incorporating observations

from more disparate sources).

Formally, consider the dependence of the parameter estimation error on the underlying network structure of

tasks, when available. Particularly, we consider a fully-connected network with N vertices (each representing

a task) and edge weights si,j capturing the pairwise similarities between any two tasks (i, j) ∈ [N ]× [N ] as

measured by our sparse difference metric, i.e., ‖βj − βi‖0 ≤ si,j . Note that this graph is undirected since

si,j = sj,i; furthermore, if two tasks i and j are unrelated, then they trivially satisfy si,j = d. Then, for any

given task j, we can optimize the subset of tasks Qj ⊆ [N ] from which to transfer knowledge. For simplicity,

we assume a strategy where we fix a threshold s̃, and keep all tasks with sparse disparity at most s̃ — i.e.,

Qj = {i∈ [N ] | si,j ≤ s̃}.

We denote the effective number of tasks by Ñ = |Qj |. Under this assumption, there is a tradeoff between

choosing smaller s̃, which yields smaller Ñ (resulting in lower bias but larger variance), and larger s̃, which

yields larger Ñ (resulting in higher bias but smaller variance). The optimal choice of s̃ (and correspondingly,

Ñ) depends on the relationship between s̃ and Ñ . Here we consider a natural power law scaling — i.e.,

s̃= min(Ñα, d), (28)

for some α ≥ 0. In other words, as we increase the number of neighbouring tasks we include, our sparsity

parameter increases by some power law s̃α until it eventually hits the maximum possible value d. Our main

result allows us to easily compute the optimal choice of s̃ (and Ñ), resulting in estimation errors that scale

with the network density α.

Corollary 3. Under the network structure in (28) and when there are sufficient tasks N = Ω(d
1

α+1 ), the

optimal estimation error of β̂jRM is

‖β̂jRM−βj‖1 = Õ

(
d

2α+1
2(α+1)

√
nj

)

by choosing Ñ = Θ(d
1

α+1 ) with at least a probability of 1− δ for any δ ≥ exp
(
−N

9
(C0−2

4C0
)2 + log(6d)

)
with

some constant C0 > 2, for appropriate choices of hyperparameters ζ, η, and λ provided in Appendix A.2.
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Proof of Corollary 3 Our network structure is exogenous regarding the sparsity threshold s̃j ; thus, we

can follow the proof steps of Theorem 1 but using a selected number of related tasks Ñ for task j.

Replacing s and N by s̃j and Ñ , plugging s̃j = Ñα in the error bound derived in Theorem 1, and optimizing

over Ñ , we can derive the optimal choice of Ñ = Θ
(
d

1
α+1

)
. The result follows by noticing the constraint on

δ becomes δ≥ exp

(
− d

1
α+1

9
(C0−2

4C0
)2 + log(6d)

)
given the current choice of s̃ and Ñ . �

Again, we obtain an improvement in the context dimension d; in particular, the estimation error of RMEs-

timator scales in proportion to d
2α+1

2(α+1) , which is always smaller than the d-scaling of OLS where we do not

learn from other tasks. The extent of this estimation error scales with the network density α. When α→ 0

(i.e., there are many tasks with high similarity to the target task), we eliminate a factor of
√
d, which can

be substantial in high dimension and is aligned with Theorem 1; when α→∞ (i.e., there are essentially no

tasks with high similarity to the target task), our improvement disappears and the error converges to that

of OLS.

A.8. Minimax Lower Bound

In this section, we provide a minimax lower bound for our multitask learning problem. This shows that our

RMEstimator is minimax optimal and matches the lower bound in the data-poor regime.

Define

Q(s,β†) = {β ∈Rd | ‖β−β†‖0 ≤ s}.

Then, the minimax risk of the estimation error in our multitask learning setting is defined as

˜̀(β̂j , βj) = inf
β̂j

sup
β†∈Rd;{βj}j∈[N]⊆Q(s,β†)

{Xj}j∈[N],{P
j
ε }j∈[N]

E[‖β̂j −βj‖1].

Since we do not know β†, we take β† as a parameter as well and consider the worst-case loss over β† together

with {βj}j∈[N]. We have the following result for the minimax risk (defined above) of our multitask problem:

Proposition 10. The minimax risk of the estimation error in our multitask learning setting in the stan-

dard regime satisfies

˜̀(β̂j , βj) = Ω̃

(
s
√
nj

+
d√
Nnj

)
,

and in the data-poor regime satisfies

˜̀(β̂j , βj) = Ω

(
s
√
nj

)
.

The minimax lower bound in the proposition above matches our upper bound in the data-poor regime in

Theorem 2. However, in the standard regime, when d� s, there’s a O(
√
d/s) mismatch between this lower

bound and our upper bound in Theorem 1; closing this gap could be an interesting direction of future work.

Proof of Proposition 10 Considering a worst-case scenario over Xj ’s and Pjε ’s, it suffices to assume εj ∼

N (0, σ2
j I) and Σ̂j = I for j ∈ [N ] in the following.
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First, we have

˜̀(β̂j , βj)≥ inf
β̂j

sup
β†=0;{βj}j∈[N]⊆Q(s,0)

E[‖β̂j −βj‖1]≥ inf
β̂j

sup
βj∈⊆Q(s,0)

E[‖β̂j −βj‖1] = Ω̃(
s
√
nj

).

The last inequality holds since no knowledge is shared in this case (i.e., β† = 0) and we can treat each task

separately. As we have a sparse βj , the minimax lower bound coincides with that of a high dimensional

linear regression problem. The proof follows a local Fano method (see, e.g., Section 8.4.1 in Duchi 2023)

and a local packing construction (see Theorem 1 (b) in Raskutti et al. 2011). We list the details below for

completeness. Let V be a packing of the set {v ∈ {−1,0,1}d | ‖v‖0 = s} and V be a random variable that

takes values uniformly on V. Then, by Lemma 5 of Raskutti et al. (2011), there exists a V such that the

cardinality |V| ≥ exp(s log( d−s
s/2

)/2) and ‖v− v′‖0 ≥ s/2 for any v, v′ ∈ V. Define βjv = δv, and we have

‖βjv −β
j
v′‖1 = δ‖v− v′‖1 = δ

∑
i∈[d]

|v(i)− v′(i)| ≥ sδ/2,

where the last inequality holds since v consists of only values −1, 0 or 1. Next, given our assumption on εj

and Σ̂j , the KL divergence has the following explicit form and satisfies

Dkl(β
j
v | β

j
v′) =

1

2σ2
j

‖Xj(βjv −β
j
v′)‖22 ≤

njδ
2

2σ2
j

‖v− v′‖22 ≤
4sδ2nj
σ2
j

,

where the last inequality again uses the fact that each element of v takes only values −1, 0 or 1. Using the

Fano’s inequality (see, e.g., Proposition 8.4.3 in Duchi 2023) yields the lower bound

˜̀(β̂j , βj)≥ sδ

2

(
1− I(V ;Yj) + log 2

log |V|

)
≥ sδ

2

(
1−

4sδ2nj/σ
2
j + log 2

s log( d−s
s/2

)/2

)
,

where I(V ;Yj) is the mutual information between V and Yj , and the second inequality uses I(V ;Yj) ≤
1
|V|2

∑
v,v′Dkl(β

j
v | β

j
v′) (see (8.4.5) in Duchi 2023). Taking δ =

√
σ2
j

log( d−s
s/2

)

32nj
, then we have ˜̀(β̂j , βj) = Ω̃( s

√
nj

).9

Moreover, we also have

˜̀(β̂j , βj)≥ inf
β̂j

sup
β†∈Rd;βj=β†,∀j∈[N]

E[‖β̂j −βj‖1] = Ω̃(
d√
n

),

where n =
∑

j∈[N] nj . As βj = β† for any j ∈ [N ] represents the homogeneous case where all tasks are the

same, it reduces to a linear regression problem with n=
∑

j∈[N] nj samples. Thus, we can directly apply the

minimax lower bound of linear regression in Example 8.4.5 of Section 8.4.1 of Duchi (2023), where we use a

similar proof strategy as above.

Combining the above two results, we have

˜̀(β̂j , βj) = Ω̃(
s
√
nj

+
d√
n

).

In the standard regime where nj = Θ(n/N), we have ˜̀(β̂j , βj) = Ω̃( s
√
nj

+ d√
Nnj

); in the data-poor regime

where nj = Θ(nj′/d
2), we have ˜̀(β̂j , βj) = Ω̃( s

√
nj

+ 1√
Nnj

) = Ω̃( s
√
nj

), since 1√
Nnj
� s
√
nj

. �

9 Note that Raskutti et al. (2011) provides a loose lower bound of Ω̃(
√

s
nj

); here we improve their bound by using

the local Fano method.
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Appendix B: Lower Bounds for Baselines

In this section, we provide detailed statements and proofs for the lower bounds discussed in §3.4 and Table 1.

It suffices to derive a lower bound for a concrete instantiation of G = {{Xj}j∈[N],{βj}j∈[N],{Pjε }j∈[N]}

since the error measure in (7) takes a worst-case scenario over G. Therefore, for the remainder of this section,

we assume εj ∼N (0, σ2
j I), and Σ̂j = I for j ∈ [N ]. Our choices of errors εj are all gaussian, which ensures

the parameter estimates are gaussian as well, thereby enabling us to obtain lower bounds by applying the

following lemma:

Lemma 4. Consider a multivariate gaussian random variable X ∼N (µ,Σ)∈Rd. We have

E [‖X‖1]≥ 1

2
‖µ‖1 +

1√
2π

tr(Σ
1
2 ).

Proof of Lemma 4 Consider the ith component of X, i.e., X(i). Let σ2
i = Σ(i,i). We have X(i) ∼N (µ(i), σ

2
i ).

Without loss of generality, assume µ(i) ≥ 0; otherwise, we can consider −X(i) instead and its `1 norm stays

the same. By our gaussian assumption, it holds that

E[|X(i)|] =

∫ ∞
−∞
|x+µ(i)|

1√
2πσ2

i

e
− x2

2σ2
i dx≥

∫ ∞
0

(x+µ(i))
1√

2πσ2
i

e
− x2

2σ2
i dx=

1

2
µ(i) +

1√
2π
σi.

Then, we further have

E[‖X‖1] =
∑
i∈[d]

E[|X(i)|] =
1

2
‖µ‖1 +

1√
2π

∑
i∈[d]

√
Σ(i,i) ≥

1

2
‖µ‖1 +

1√
2π

tr(Σ
1
2 ),

where the last step uses
√

Σ(i,i) = ‖Σ
1
2

(i,·)‖2 ≥Σ
1
2

(i,i). �

B.1. Independent Estimator

First, we provide a proof of lower bound for the independent estimator β̂jind.

Proof of Proposition 1 For our choice of Xj and εj , the estimation error follows a gaussian distribution:

β̂jind−βj ∼N
(

0,
σ2
j

nj
I

)
.

Therefore, using Lemma 4, we have

E
[
‖β̂jind−βj‖1

]
≥ dσj√

2πnj
. �

B.2. Averaging/Pooling Estimator

Next, we provide a proof of lower bound for the averaging estimator β̂javg and the pooling estimator β̂jpool.

Proof of Proposition 2 For our choice of Xj ’s and εj ’s, the estimation error of the averaging estiamtor

follows a gaussian distribution:

β̂javg−βj =
1

N

∑
i∈[N]

(β̂iind−βi) +
1

N

∑
i∈[N]

(δi− δj)∼N

 1

N

∑
i∈[N]

(δi− δj), 1

N2

∑
i∈[N]

σ2
i

ni
I

 .

Therefore, by Lemma 4, we have

E
[
‖β̂javg−βj‖1

]
≥ 1

2

∥∥∥∥∥∥ 1

N

∑
i∈[N]

(δi− δj)

∥∥∥∥∥∥
1

+
1√
2π

√√√√ 1

N

∑
i∈[N]

σ2
i nj
ni

d√
Nnj

.
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Similarly, the estimation error of the pooling estimator also follows a gaussian distribution:

β̂jpool−βj =

∑
i∈[N]

Xi>Xi

−1∑
i∈[N]

Xi>Xi(δi− δj)

+

∑
i∈[N]

Xi>Xi

−1∑
i∈[N]

Xi>εi


∼N

(∑
i∈[N] ni(δ

i− δj)∑
i∈[N] ni

,

∑
i∈[N] σ

2
i ni

(
∑

i∈[N] ni)
2
I

)
.

Therefore, Lemma 4 implies

E
[
‖β̂jpool−βj‖1

]
≥ 1

2

∥∥∥∥∥
∑

i∈[N] ni(δ
i− δj)∑

i∈[N] ni

∥∥∥∥∥
1

+
1√
2π

√
(
∑

i∈[N] σ
2
i ni)Nnj

(
∑

i∈[N] ni)
2

d√
Nnj

.

In data-poor regime, we use all the instances except j to calculate β̂javg and β̂jpool. The proof strategy is

similar. �

B.3. Averaging Multitask Estimator

Finally, we provide a proof of lower bound for the averaging multitask estimator. Following the proof of

the LASSO lower bound in Theorem 7.1 of Lounici et al. (2011), we assume that λj is chosen based on the

corresponding upper bound analysis; thus, we let λj =

√
32σ2

j

nj
log( 4d

δ
) and δ = d−D0 with a constant D0 ≥ 3

through a similar argument as Lemma 1.

Proof of Proposition 3 The proof strategy is adapted from that of Theorem 7.1 in Lounici et al. (2011).

The first order condition of problem (3) is,
1
nj

(
Xj>(Yj −Xjβ̂jAM)

)
(i)

= λjsign(β̂jAM,(i)− β̂
†
AM,(i)) if β̂jAM,(i) 6= β̂†AM,(i)∣∣∣∣ 1

nj

(
Xj>(Yj −Xjβ̂jAM)

)
(i)

∣∣∣∣≤ λj if β̂jAM,(i) = β̂†AM,(i).
(29)

Note that on the event Hj in (15), it holds that 2
nj
|(Xj>εj)(i)| ≤

λj

2
. Combining it with (29), we have

3λj
4
≤
∣∣∣∣ 1

nj

(
Xj>(Xjβj −Xjβ̂jAM)

)
(i)

∣∣∣∣= |(β̂jAM−βj)(i)|

for each i such that β̂jAM,(i) 6= β̂†AM,(i), where the last equality is from our assumption Σ̂j = I. Note that for

the rest of the components in [d], we have β̂jAM,(i) = β̂†AM,(i). Summing over all i∈ [d], we get

‖β̂jAM−βj‖1 ≥
3|V|λj

4
(30)

with at least a probability of P [Hj ]≥ 1−d−C/2 given our choice of λj , where V = {i∈ [d] | β̂jAM,(i) 6= β̂†AM,(i)}.

Define δ̂jAM = β̂jAM− β̂
†
AM and δ̃jAM = βj − β̃†AM, where β̃†AM is defined in (4). Note that |V|= ‖δ̂jAM‖0.

Next, we prove by contradiction that δ̂jAM,(i) = 0 implies δ̃jAM,(i) = 0 with high probability for any i ∈ [d].

Suppose this is not true and there exists i∈ [d] such that δ̂jAM,(i) = 0 but δ̃jAM,(i) 6= 0. Again, by the first order

condition (29) and on the event Hj , we have

|(β̂†AM−βj)(i)|= |(β̂jAM−βj)(i)| ≤
5λj
4
,

and hence

|(βj − β̃†AM)(i)| ≤
5λj
4

+ |(β̃†AM− β̂
†
AM)(i)|.
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Note that

β̂†AM− β̃
†
AM =

1

N

∑
i∈[N]

(β̂iind−βi)∼N

0,
1

N2

∑
i∈[N]

σ2
i

ni
I

 .

Using a Chernoff bound, we have for any t > 0 and i∈ [d]

P
[
|(β̂†AM− β̃

†
AM)(i)| ≥ t

]
≤ 2 exp

(
− t2

2
N2

∑
m∈[N]

σ2
m

nm

)
.

Take t =
√

2D0 log(4d)

N2

∑
m∈[N]

σ2
m

nm
, where D0 is any constant with D0 ≥ 3. Then, using a union bound over

Hj , the true parameter βj should satisfy

|(βj − β̃†AM)(i)| ≤

√
50(1 +D0)σ2

j

nj
log(4d) +

√√√√2D0

N2

∑
m∈[N]

σ2
m

nm
log(4d) (31)

with at least a probability of 1− d−D0 .

Note that the inequality (31) should hold for any parameters {βj}j∈[N] if our statement holds true — i.e.,

there exists i ∈ [d] such that δ̂jAM,(i) = 0 but δ̃jAM,(i) 6= 0. However, we can find βj ’s that do not satisfy (31).

Consider the following two situations respectively: (i) Ns≤ d and (ii) Ns> d. In particular,

(i). when Ns≤ d, let (a) |δk(i)|>
√

50(1+D0)σ2
j
N2

nj
log(4d) +

√
2D0

∑
m∈[N]

σ2
m

nm
log(4d) when δk(i) 6= 0 for any

i∈ [d], k ∈ [N ], and (b) |{k ∈ [N ] | δk(i) 6= 0}| ≤ 1 for any i∈ [d];

(ii). when Ns > d, let (a) δj(i) >

√
50(1+D0)σ2

j
d2

s2nj
log(4d) +

√
2D0d2

s2N2

∑
m∈[N]

σ2
m

nm
log(4d) and −δk(i) >√

50(1+D0)σ2
j
d2

s2nj
log(4d) +

√
2D0d2

s2N2

∑
m∈[N]

σ2
m

nm
log(4d) when δj(i), δ

k
(i) 6= 0 for any k 6= j, i ∈ [d], and (b)

|{k ∈ [N ] | δk(i) 6= 0}|=Ns/d for any i∈ [d].

In both cases, we find specific βj ’s that raise a contradiction to (31). As a consequence, whenever δ̂jAM,(i) = 0,

it holds that δ̃jAM,(i) = 0 with probability at least 1− d−C , and hence ‖δ̂jAM‖0 ≥ ‖δ̃
j
AM‖0. Correspondingly,

note that |V| ≥min{Ns,d} given ‖δ̃jAM‖0 = min{Ns,d} in our design above.

Additionally, it always holds true that

‖β̂jAM−βj‖1 ≥ ‖(β̂
†
AM−βj)Vc‖1.

By Lemma 4 and given the set V, we have

E
[
‖(β̂†AM−βj)Vc‖1

]
≥ 1

2

∥∥∥∥∥∥ 1

N

∑
i∈[N]

(δi− δj)Vc

∥∥∥∥∥∥
1

+
1√
2π

√√√√ 1

N

∑
i∈[N]

σ2
i nj
ni

|Vc|√
Nnj

=
1√
2π

√√√√ 1

N

∑
i∈[N]

σ2
i nj
ni

|Vc|√
Nnj

, (32)

where the last equality holds because the support of δ̂jAM includes that of δ̃jAM as shown in the last paragraph.

Given |V| ≤ d and the fact that |V| ≥min{Ns,d} holds with probability at least 1−d−C , we derive from (32)

that

E
[
‖β̂jAM−βj‖1

]
≥E

 1√
2π

√√√√ 1

N

∑
i∈[N]

σ2
i nj
ni

d− |V|√
Nnj

∣∣∣∣∣∣d≥ |V| ≥min{Ns,d}

 (1− d−D0). (33)
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Further, from (30), we also have

E
[
‖β̂jAM−βj‖1

]
≥E

[
3|V|λj

4

]
P
[
Hj
]
≥E

[
3(1− d−D0/2)|V|λj

4

∣∣∣∣d≥ |V| ≥min{Ns,d}
]

(1− d−D0). (34)

Combining (33) and (34), we have

E
[
‖β̂jAM−βj‖1

]
≥ 1− d−D0

2
E

3(1− d−D0/2)|V|λj
4

+
1√
2π

√√√√ 1

N

∑
i∈[N]

σ2
i nj
ni

d− |V|√
Nnj

∣∣∣∣∣∣d≥ |V| ≥min{Ns,d}

 ,
where we use max{a, b} ≥ (a+ b)/2. As the above lower bound is linear in |V|, its minimum value is taken

at either end of the interval [min{Ns,d}, d]. Therefore, we can derive that

E
[
‖β̂jAM−βj‖1

]
≥ (1− d−D0) min

{
3(1− d−D0/2)d

2

√
2(1 +D0)σ2

j

nj
log(4d),

3(1− d−D0/2) min{Ns,d}
2

√
2(1 +D0)σ2

j

nj
log(4d) +

1

2
√

2π

√√√√ 1

N

∑
i∈[N]

σ2
i nj
ni

max{d−Ns,0}√
Nnj

 .

Therefore, when Ns= o(d), we can write

E
[
‖β̂jAM−βj‖1

]
= Ω̃(

Ns
√
nj

+
d√
Nnj

);

when Ns= Ω(d), we get

E
[
‖β̂jAM−βj‖1

]
= Ω̃(

d
√
nj

).

The proof for the data-poor regime is similar, where in the first stage we use all the instances except j to

calculate β̂†AM. �

Appendix C: Proof Strategy for RMBandit

In this section, we sketch the proof of our regret bound in Proposition 7 (and hence Theorem 3). The proof

builds on the regret analysis of LASSO Bandit (Bastani and Bayati 2020), but with the confidence intervals

afforded by our RMEstimator in the random design. As noted earlier, one key challenge is the requirement that

the OLS estimators {β̂jind}j∈[N] across different instances be independent in order to invoke our RMEstimator;

RMBandit achieves this goal using a batching strategy, as highlighted in Lemma 5.

Forced-Sample Estimator. Our algorithm uses a separate forced-sample estimator, which we can guar-

antee is close to the true parameter with high probability. Intuitively, the forced-sample estimator is suffi-

ciently accurate to exclude arms in Kjsub from consideration, and thus the all-sample estimator only needs

to identify the optimal arms among Kjopt, which can be proved guaranteed with high probability.

Proposition 11. When N = Ω (log(d) log(T )), the forced-sample estimator β̂jk,0 = β̂jk(B0, λ0,j , ω0) satisfies

P
[
‖β̂jk,0−β

j
k‖1 ≥

h

4xmax

]
≤ 8

T
,

for the choices of hyperparameter ζ0, η0, λ0, and q specified in Appendix D.1.
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We give a proof in Appendix D.1. At a high level, this result follows directly from our tail inequality in a

random design (i.e., Proposition 6), since the forced samples are i.i.d. random variables.

All-Sample Estimator. Next, we provide a tail inequality for our all-sample estimator for all arms

that belong to Kjopt. In contrast to the forced-sample estimator, which is based on O(log(T )) samples, the

all-sample estimator is based on O(T ) samples (since we will show that all optimal arms receive a linear

number of samples with high probability). Therefore, the all-sample estimator has smaller error than the

forced-sample estimator (the tradeoff is that these samples are adaptively assigned to arms, so they may

be collected from biased regions of the covariate space; thus, the i.i.d. samples generated when using the

forced-sample estimator are needed to ensure that the all-sample estimator converges). In particular, define

the following event, which says that all the forced-sample estimators have small error:

A=

{
‖β̂jk(B0, λ0,j , ω0)−βjk‖1 ≤

h

4xmax

,∀j ∈ [N ], k ∈ [K]

}
. (35)

This event holds with high probability by Proposition 11. Our next result shows that our all-sample estimator

satisfies the following tail inequality conditional on the event A.

Proposition 12. When the event A holds and N = Ω (log(d) log(T )), the all-sample estimator β̂jk,m̄ =

β̂jk(Bm̄, λ1,j,m̄, ω1,m) of optimal arm k ∈Kjopt satisfies

‖β̂jk,m̄−β
j
k‖1 ≤C1

√
sd log(dpj |Bm̄|)

pj |Bm̄|
+C2

√
sd log(ρN)

pj |Bm|
+C3d

√
log(dpj |Bm|) log(ρN)

Npj |Bm|

with probability at least 1 −
(

6
mini∈Wk pi|Bm|

+ 4
pj |Bm|

+
∑

i∈Wk
7d exp(− p∗piψ|Bm|

32dx2
max

)
)

for the hyperparameter

choices ζ1,0, η1,0, and λ1,0, and the constants C1, C2 and C3 specified in Appendix D.1.

We give a proof in Appendix D.1. As previously discussed, since our all-sample estimators are constructed

using all available samples, they may not be independent across instances; however, the trimmed mean

estimator in Step 1 of our RMEstimator (described in §3.2) requires that the OLS inputs are independent

across instances. By using a batching strategy, we ensure that the samples from the same batch Bm that we

use to calculate the OLS inputs are (conditionally) independent across bandit instances (note that in Step

2 we still use all the data of the target instance from all batches Bm̄). In particular, we have the following

lemma:

Lemma 5. The samples assigned to arm k in batch Bm (for any m ≥ 1) are independent across bandit

instances conditioned on F ¯m−1 = σ({Xt,Zt, Yt}t∈B ¯m−1
), the σ-algebra generated by the samples from B ¯m−1.

We give a proof in Appendix D.1. Given this lemma, Proposition 12 follows instantly by applying Proposi-

tion 6.

Regret Analysis. Finally, we describe how the above results enable us to prove Proposition 7. For this

regret analysis, we decompose time steps t∈ [T ] into three cases, and bound the regret across time steps in

each case separately:

(i). when T ≤N , or the forced-sample batch (t∈B0) or the first all-sample batch (t∈B1);

(ii). when T ≥N and A does not hold, all the remaining batches (t∈Bm for m> 1);
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(iii). when T ≥N and A holds, all the remaining batches (t∈Bm for m> 1).

For case (i), note that the sizes of the first two batches B0 and B1 are both q log(T ) and q scales as Õ(Kd(sN+

d)). In the worst case, the regret for one time step is at most 2bxmax, so the regret in this case is bounded.

For case (ii), we have shown that the event A holds with high probability. Similar to case (i), in the worst

case, the regret for one time step is at most 2bxmax, so the regret in this case is also bounded with high

probability. Finally, for case (iii) when A holds, Proposition 12 guarantees that the all-sample estimator

has small error with high probability, again ensuring that the regret is bounded with high probability. We

provide the details in Appendix D.1.

Appendix D: Multitask Bandits

In this section, we provide the proofs for Proposition 7 and Theorem 3 in §D.1, and Theorem 4 in §D.2.

D.1. Standard Regime

The hyperparameters are

ω0 = ζ0 + η0, ζ0 = ζ1,0 =
C0− 2

4C0

√
s

d
, η0 =

√
27 log(d)|B0|

qN
, η1,0 =

√
9

ρN
,

λ0 = max
i∈[N]

√
96σ2

i x
2
maxK log(d)|B0|

q
, λ1,0 = max

i∈[N]

√
384σ2

i x
2
max

p∗
,

and

q= max

{
2 · 3843C2

0x
4
max(maxi∈[N] σ

2
i /pi)Ksd log(d)

(C0− 2)2h2p2
∗ψ

2
,
576C2

0x
2
max(maxi∈[N] σ

2
i /pi)Ksd log(N)

h2p∗ψ
,

6 · 1922C2
0x

2
max(maxi∈[N] σ

2
i /pi)Kd

2 log(d) log(N)

h2p∗ψN
,
96x2

maxKd log(dN)

p∗ψ(mini∈[N] pi)

}
.

Note that

λ0,j = λ0/

√
|Bj0|, ζ1,m = ζ1,0, η1,m = η1,0

√
log(d min

i∈[N],|Bim|>0
|Bim|), λ1,j,m̄ = λ1,0

√
log(d|Bjm̄|)
|Bjm̄|

as in Algorithm 2.

The constants in Proposition 12 are

C1 =
962C0σjxmax

(C0− 2)p3/2
∗ ψ

, C2 =
3C0

2p∗
(max
i∈[N]

√
2σ2

i pj
ψpi

), C3 =
24C0

p∗
(max
i∈[N]

√
2σ2

i pj
ψρpi

).

Forced-Sample Estimator. First, we provide an estimation error bound for our forced-sample estimators

(i.e., Proposition 11). For simplicity, we use ζ, η and λj to represent ζ0, η0 and λ0,j (described at the beginning

of §D.1) respectively in the following.

Additional Notation. Let Bj0 be the index set of observations at instance j, Bj0,k ⊆B
j
0 be the subset forced

sampled at arm k, and B̄j0,k ⊆B
j
0,k be the subset where Xt ∈U j

k ; particularly,

Bj0 = {t∈B0 |Zt = j}, Bj0,k = {t∈B0 |Zt = j, (k− 1)≡ (
∑
r∈[t]

1(Zr = j)− 1) mod K},

B̄j0,k = {t∈B0 |Zt = j, Xt ∈UZt
k , (k− 1)≡ (

∑
r∈[t]

1(Zr = j)− 1) mod K}.

Let Σ̂(B) be the sample covariance matrix calculated using the samples {Xt}t∈B, i.e., Σ̂(B) =
∑

t∈BXtX
>
t /|B|.
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Lemma 6. The forced samples at arm k are independent across bandit instances.

Proof of Lemma 6 The forced samples of arm k at instance j are {(Xt, Yt)}t∈Bj
0,k

, where the set of covari-

ates is

{Xt | t∈Bj0,k, Zt = j, (k− 1)≡ (
∑
r∈[t]

1(Zr = j)− 1) mod K}.

Since {(Xt,Zt)}t∈B0
are independent, Xt is independent of Zt′ and Xt′ conditional on Zt for any t′ 6= t and

t′ ∈B0. Therefore, given Zt = j, we derive that
∑

r∈[t] 1(Zr = j)− 1 =
∑

r∈[t−1] 1(Zr = j) is also independent

of Xt. This implies Xt’s observed at arm k are independent across bandit instances. Similarly, Yt’s are also

independent across different instances noting that the noises εt only depends on Zt by design. The result

then follows. �

Lemma 7. The samples {Xt}t∈Bj
0,k

are i.i.d. with distribution PjX , and its subset {Xt}t∈B̄j
0,k

are i.i.d. with

distribution Pj
X|X∈Uj

k

.

Proof of Lemma 7 Similar to the proof of Lemma 6, we can show that {Xt}t∈Bj
0,k

are independent. As∑
r∈[t] 1(Zr = j) is independent of Xt given Zt = j, Xt follows the distribution PjX . On the other hand, the

subsamples {Xt}t∈B̄j
0,k

form the set

{Xt | t∈ B̄j0,k, Xt ∈UZt
k , Zt = j, (k− 1)≡ (

∑
r∈[t]

1(Zr = j)− 1) mod K}.

Since {(Xt,Zt)}t∈B0
are independent, Xt is independent of Zt′ and Xt′ conditional on

{
Xt ∈UZt

k ,Zt = j
}

for

any t′ 6= t and t′ ∈B0. Correspondingly, we can conclude that {Xt}t∈B̄j
0,k

are i.i.d. drawn from Pj
X|X∈Uj

k

. �

Lemma 8. Define the events

D̄j0,k =
{
|B̄j0,k| ≥

p∗
2
|Bj0,k|

}
, Mj

0 =
{
|Bj0| ≥

pj
2
|B0|

}
. (36)

Then, it holds that

P
[
D̄j0,k

]
≥ 1− 2 exp

(
−
p∗|Bj0,k|

10

)
, P

[
Mj

0

]
≥ 1− 2 exp

(
−pj |B0|

10

)
,

given |Bj0,k| and |B0| respectively.

Proof of Lemma 8 Applying Lemma 21 to the indicator random variables 1
(
t∈ B̄j0,k

)
for all t∈Bj0,k with

µ=E
[∑

t∈Bj
0,k
1
(
t∈ B̄j0,k

)]
=
∑

t∈Bj
0,k

P
[
Xt ∈U j

k |Zt = j
]
, we have

P
[
||B̄j0,k| −µ| ≥

µ

2

]
≤ 2 exp

(
− µ

10

)
.

Noting µ≥ p∗|Bj0,k| by Assumption 7, our first result then follows.

Similarly, applying Lemma 21 to the indicator random variables 1 (Zt = j) for all t ∈ B0 with µ =

E
[∑

t∈B0
1 (Zt = j)

]
=
∑

t∈B0
P [Zt = j] = pj |B0|, we have

P
[
||Bj0| − pj |B0|| ≥

pj |B0|
2

]
≤ 2 exp

(
−pj |B0|

10

)
,

which implies our second result. �
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Lemma 9. Define the event

Ēj0,k =

{
λmin(Σ̂(B̄j0,k))≥

ψ

2

}
. (37)

Then, we have

P
[
Ēj0,k

]
≥ 1− d exp

(
−
ψ|B̄j0,k|
8dx2

max

)
,

P
[
λmin(Σ̂(Bj0,k))≥

p∗ψ

4

]
≥ 1−

(
d exp

(
−
p∗ψ|Bj0,k|
16dx2

max

)
+ 2 exp

(
−
p∗|Bj0,k|

10

))
,

given |B̄j0,k| and |Bj0,k| respectively.

Proof of Lemma 9 Note that {XtX
>
t }t∈B̄j

0,k
are i.i.d. according to Lemma 7. Our first result follows then

by applying Lemma 2.

Conditioned on D̄j0,k in (36) and Ēj0,k in (37), Lemma 22 implies λmin(Σ̂(Bj0,k))≥ p∗ψ/4. Therefore, we have

P
[
λmin(Σ̂(Bj0,k))≤

p∗ψ

4

]
≤ P

[
(D̄j0,k)c ∪ (Ēj0,k)c

]
≤ P

[
(Ēj0,k)c

∣∣ D̄j0,k]+P
[
(D̄j0,k)c

]
.

Then, applying Lemma 8, we have

P
[
(D̄j0,k)c

]
≤ 2 exp

(
−
p∗|Bj0,k|

10

)
,

P
[
(Ēj0,k)c

∣∣ D̄j0,k]≤E

[
d exp

(
−
ψ|B̄j0,k|
8dx2

max

)∣∣∣∣∣ D̄j0,k
]
≤ d exp

(
−
p∗ψ|Bj0,k|
16dx2

max

)
.

Our second result then follows. �

Now, we prove Proposition 11 by combining Proposition 6 and all the previous results.

Proof of Proposition 11 Lemma 6 and 7 imply that the forced-sample OLS estimators are subgaussian

and independent across task j ∈ [N ]; thus, the conditions of Proposition 6 are satisfied. Applying Proposi-

tion 6 by setting ψ̃= p∗ψ/2, we have

P

[
‖β̂jk,0−β

j
k‖1 ≥

24λjs

p∗ζψ
+ 2C0d(3ζ + 4η) max

i∈[N]

√
σ2
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p∗ψ|Bi0,k|
log(

3

η
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≤ 3d exp
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−Nη
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9

)
+ 2d exp

(
−
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j |B

j
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32σ2
j x

2
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)
+
∑
i∈[N]

P
[
λmin(Σ̂(Bi0,k))≤

p∗ψ

4

]

≤ 3d exp

(
−Nη
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)
+ 2d exp

(
−

λ2
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j
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32σ2
j x
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)

+
∑
i∈[N]

d exp

(
−
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16dx2
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)
+
∑
i∈[N]

2 exp

(
−
p∗|Bi0,k|

10

)
,

given {|Bi0,k|}i∈[N], where the second inequality uses Lemma 9. Since |Bj0,k|= |B
j
0|/K by our forced sampling

design, we have for given {|Bi0|}i∈[N]

P

[
‖β̂jk,0−β

j
k‖1 ≥

24λjs

p∗ζψ
+ 2C0d(3ζ + 4η) max

i∈[N]

√
Kσ2

i

p∗ψ|Bi0|
log(

3

η
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]

≤ 3d exp

(
−Nη

2

9

)
+ 2d exp

(
−
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j |B

j
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32Kσ2
j x

2
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)

+
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i∈[N]

d exp

(
− p∗ψ|Bi0|

16Kdx2
max

)
+
∑
i∈[N]

2 exp

(
−p∗|B

i
0|

10K

)
. (38)
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Now we configure the hyperparameters ζ, λj , η and q (recall that |B0|= q log(T )) such that our forced-

sample estimator has estimation error smaller than h/(4xmax) with high probability. Similar to the proof of

Theorem 1, we take ζ = C0−2
4C0

√
s
d
; we further set

η=

√
27 log(d)|B0|

qN
, λj =

√
96σ2

j x
2
maxK log(d)|B0|
q|Bj0|

.

In the following, we will frequently use the inequality

3 log(T ) log(x)≥ log(Tx) (39)

for T > 1 and any x > 1. Given our choices of η and λj and inequality (39), the sum of the first two

probabilities on the RHS of (38) is upper bounded by 5/T . To bound the sizes of the batches {|Bi0|}i∈[N], we

apply a union bound over
⋂
i∈[N]Mi

0 defined in (36) using Lemma 8. This yields

P

[
‖β̂jk,0−β

j
k‖1 ≥

768C0σjxmax

(C0− 2)p∗ψ

√
3Ksd log(d)

qpj
+C0

(
3
√
sd

2
+ 24d

√
3 log(d)|B0|

qN

)
max
i∈[N]

√
Kσ2

i log(N)

2p∗ψpi|B0|

]

≤ 5

T
+
∑
i∈[N]

d exp

(
− p∗ψpi|B0|

32Kdx2
max

)
+
∑
i∈[N]

4 exp

(
−p∗pi|B0|

20K

)
≤ 5

T
+
∑
i∈[N]

3d exp

(
− p∗ψpi|B0|

32Kdx2
max

)
, (40)

where we use log( 3
η
)≤ log(N)

2
, the first inequality uses P [(Mi

0)c]≤ 2 exp
(
− p∗pi|B0|

20K

)
, and the last inequality

uses ψ≤ λmin

(
Σj
k

)
≤ λmax

(
Σj
k

)
≤ ‖Xt‖22 ≤ dx2

max. Next, we choose a sufficiently large q such that

h

8xmax

≥ 768C0σjxmax

(C0− 2)p∗ψ

√
3Ksd log(d)

qpj
,

h

16xmax

≥C0

3
√
sd

2
max
i∈[N]

√
Kσ2

i log(N)

2p∗ψpi|B0|
,

h

16xmax

≥ 24C0d

√
3 log(d)|B0|

qN
max
i∈[N]

√
Kσ2

i log(N)

2p∗ψpi|B0|
,

3

T
≥
∑
i∈[N]

3d exp

(
− p∗ψpi|B0|

32Kdx2
max

)
.

With a choice of q satisfying all the above constraints, the result then follows (40). It suffices to set

q= max

{
2 · 3843C2

0x
4
max(maxi∈[N] σ

2
i /pi)Ksd log(d)

(C0− 2)2h2p2
∗ψ

2
,
576C2

0x
2
max(maxi∈[N] σ

2
i /pi)Ksd log(N)

h2p∗ψ
,

6 · 1922C2
0x

2
max(maxi∈[N] σ

2
i /pi)Kd

2 log(d) log(N)

h2p∗ψN
,
96x2

maxKd log(dN)

p∗ψ(mini∈[N] pi)

}
.

Remember we also require η≤ 1/2− 1/C0− ζ according to Proposition 6, which is satisfied as long as

log(T )≤
(
C0− 2

2C0

(
1− 1

2

√
s

d

))2
N

27 log(d)
. � (41)

All-Sample Estimator. Next, we prove Proposition 12, which shows our all-sample estimators have

small estimation errors with high probability. For simplicity, we use ζ, η and λj to represent ζ1,m, η1,m and

λ1,j,m̄ (described at the beginning of §D.1) respectively in the following.
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Additional Notation. Let Bjm be the index set of observations at instance j in batch m, Bjm,k ⊆Bjm be the

subset batch sampled at arm k, and B̄jm,k ⊆ B
j
m,k be the subset where Xt ∈ U j

k when A holds; particularly,

for any m≥ 1,

Bjm = {t∈Bm |Zt = j} , Bjm,k =
{
t∈Bm |Zt = j, πZt¯m−1

(Xt) = k
}
,

B̄jm,k =
{
t∈Bm |Zt = j, Xt ∈UZt

k , A
}
,

where we use the notation m̄ to represent the union
⋃m

l=0 and m̃ to represent
⋃m

l=1, e.g., Bm̃ =
⋃m

l=1Bl,

Bjm̄,k =
⋃m

l=0B
j
l,k, and, with a slight abuse of notation, we use πZt¯m−1

to represent the sub-policy of instance j

estimated using the data from B ¯m−1.

First, we provide a proof for Lemma 5 to show the conditional independence of our samples in each batch.

Proof of Lemma 5 The collected samples of arm k at instance j in the batch Bm are {(Xt, Yt)}t∈Bj
m,k

,

where the set of covariates is {
Xt

∣∣ t∈Bjm,k, Zt = j, πZt¯m−1
(Xt) = k

}
.

Note that our estimated policy πZt¯m−1
depends on Zt and is constructed using samples from B ¯m−1. Since

{(Xt,Zt, Yt)}t∈Bm̄ are independent, {(Xt,Zt, π
Zt

¯m−1
(Xt))}t∈Bm are independent conditional on F ¯m−1. Thus,

for any t′ 6= t and t′ ∈ Bm, Xt is independent of Zt′ , Xt′ and π
Zt′

¯m−1
(Xt′) conditional on {Zt = j, πZt¯m−1

(Xt) =

k,F ¯m−1}. This implies Xt’s of arm k in batch m are conditionally independent across instances. Moreover,

since the noises εt’s are independent of Xt’s and only depends on Zt’s by design, the result then follows. �

Remark 9. Note that the samples across instances are also independent given {A,F ¯m−1} since A∈F ¯m−1.

Lemma 10. (i) B̄jm,k ⊆ B
j
m,k, (ii) {Xt}t∈Bj

m,k
are i.i.d. from Pj

X|πj ¯m−1
(X)=k

conditioned on F ¯m−1, and its

subset {Xt}t∈B̄j
m,k

are i.i.d. from Pj
X|X∈Uj

k

, and (iii) {Xt}t∈B̄j
m̃,k

are i.i.d. from Pj
X|X∈Uj

k

.

Proof of Lemma 10 The first claim follows Lemma EC.11 in Bastani and Bayati (2020). If Zt = j, Xt ∈U j
k

and the event A holds, then πZt¯m−1
(Xt) = k and hence t∈Bjm,k.

Similar to the proof of Lemma 5, we can show that {Xt}t∈Bj
m,k

are i.i.d. from distribution Pj
X|πj ¯m−1

(X)=k

conditioned on F ¯m−1. Additionally, note that the event A only depends on forced samples from B0 and

is hence independent of {(Xt,Zt)}t∈Bm for any m ≥ 1. Therefore, Xt for any t ∈ B̄jm,k follows distribution

Pj
X|X∈Uj

k

. Since {(Xt,Zt)}t∈Bm are independent, Xt is independent of Zt′ and Xt′ given {Zt = j,Xt ∈UZt
k ,A}

for any t′ 6= t and t′ ∈Bm. Thus, {Xt}t∈B̄j
m,k

are also independent.

Correspondingly, we can show {Xt}t∈B̄j
m̃,k

are also i.i.d. from Pj
X|X∈Uj

k

, where B̄jm̃,k =
⋃m

l=1 B̄
j
l,k ={

t∈
⋃m

l=1Bl
∣∣Zt = j, Xt ∈UZt

k , A
}

. �

Remark 10. Note that (ii) and (iii) both hold further conditioned on A. The first statement in (ii) still

holds as A∈F ¯m−1 while the second statement in (ii) and the statement in (iii) hold as {(Xt,Zt, Yt)}B0
are

independent of {(Xt,Zt)}Bm̃ .

Lemma 11. Define the events

D̄jm,k =
{
|B̄jm,k| ≥

p∗
2
|Bjm|

}
, Mj

m =
{
|Bjm| ≥

pj
2
|Bm|

}
, Mj

m̄ =

{
3pj
2
|Bm̄| ≥ |Bjm̄| ≥

pj
2
|Bm̄|

}
. (42)
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Then, we have

P
[
D̄jm,k

∣∣A]≥ 1− 2 exp

(
−p∗|B

j
m|

10

)
, P

[
Mj

m

]
≥ 1− 2 exp

(
−pj |Bm|

10

)
, P

[
Mj

m̄

]
≥ 1− 2 exp

(
−pj |Bm̄|

10

)
,

given |Bjm|, |Bm| and |Bm̄| respectively.

Proof of Lemma 11 By definition of B̄jm,k, we have

|B̄jm,k|=
∑
t∈Bjm

1
(
t∈ B̄jm,k

)
=
∑
t∈Bjm

1
(
Zt = j,Xt ∈UZt

k

)
1 (A) .

Take µ = E
[
|B̄jm,k|

∣∣A] = E
[∑

t∈Bjm
1
(
Zt = j,Xt ∈UZt

k

)]
=
∑

t∈Bjm
P
[
Xt ∈U j

k |Zt = j
]
, where the second

equality is from the fact that {(Xt,Zt)}t∈Bm are independent of {(Xt,Zt, Yt)}t∈B0
. Then, the first bound

about D̄jm,k follows using Lemma 21 and the fact that µ≥ p∗|Bjm| given by Assumption 7. The rest of the

proof is similar to that of Lemma 8. �

Remark 11. Note that the high probability bound of |Bjm| also holds conditioned on A as {Zt}t∈Bm are

independent of {(Xt,Zt, Yt)}t∈B0
.

Lemma 12. Given |Bjm|, we have

P
[
λmin(Σ̂(Bjm,k))≥

p∗ψ

4

∣∣∣∣A]≥ 1−
(
d exp

(
− p∗ψ|B

j
m|

16dx2
max

)
+ 2 exp

(
−p∗|B

j
m|

10

))
.

Further on the event Mj
m and Mj

m̄ in (42), it holds that

P
[
λmin(Σ̂(Bjm̄,k))≥

p∗ψ

24

∣∣∣∣A]≥ 1−
(
d exp

(
− p∗ψ|B

j
m|

16dx2
max

)
+ 2 exp

(
−p∗|B

j
m|

10

))
.

Proof of Lemma 12 Define the following event analogous to (37)

Ējm,k =

{
λmin(Σ̂(B̄jm,k))≥

ψ

2

}
.

By Lemma 22 and the fact that |Bjm| ≥ |B
j
m,k|, it holds that λmin(Σ̂(Bjm,k))≥ p∗ψ/4 on the events D̄jm,k in

(42) and Ējm,k above. Thus, we have

P
[
λmin(Σ̂(Bjm,k))≤

p∗ψ

4

∣∣∣∣A]≤ P
[
(D̄jm,k)c ∪ (Ējm,k)c

∣∣A]≤ P
[
(Ējm,k)c

∣∣ D̄jm,k,A]+P
[
(D̄jm,k)c

∣∣A] .
Our first result then follows by noting that

P
[
(Ējm,k)c

∣∣ D̄jm,k,A]≤ d exp

(
− p∗ψ|B

j
m|

16dx2
max

)
, P

[
(D̄jm,k)c

∣∣A]≤ 2 exp

(
−p∗|B

j
m|

10

)
,

where the first bound can be derived similarly following the proof of Lemma 9 given Lemma 10, and the

second bound uses Lemma 11.

Since |Bjm| ≥ |B
j
m,k|, the above also holds for λmin(Σ̂(Bjm)). Then, on the event Mj

m and Mj
m̄, we have

λmin(Σ̂(Bjm̄,k))≥
|Bjm|
|Bjm̄,k|

λmin(Σ̂(Bjm))≥ |B
j
m|
|Bjm̄|

p∗ψ

4
≥ p∗ψ

24
,

where the last inequality uses Lemma 22 and the fact that |Bm̄|= 2|Bm|. Our second result then follows. �

Now we provide the proof of Proposition 12.
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Proof of Proposition 12 At a high level, our proof is adapted from Proposition 6, and similar to that of

Proposition 11, but now conditioned on A. However, it differs in the following two aspects. First, given arm

k, we consider learning across a subset of instances of which arm k is an optimal arm, i.e., Wk ⊆ [N ] defined

in Assumption 10. This is because the suboptimal arms won’t observe any users on the event of A. Moreover,

since we use batch data from {Bim,k}i∈[N] to compute our trimmed mean estimator but now all data from

Bjm̄,k to debias for instance j using LASSO, we now bound the following events

Hj(Bjm̄,k) =

{
2

|Bjm̄,k|
‖Xj>εj‖∞ ≤

λj
2

}
,

and {λmin(Σ̂(Bjm̄,k))≥ p∗ψ/24} instead (in contrast toHj(Bjm,k) and {λmin(Σ̂(Bjm,k))≥ p∗ψ/24}) respectively.

In our definition of Hj(Bjm̄,k) above, for simplicity, we use (Xj ,Yj) to represent data collected at arm k and

instance j up to batch m, i.e., {(Xt, Yt)}t∈Bj
m̄,k

; note that Bjm̄,k contains an adapted sequence of observations

so we will use a concentration inequality for martingale sequence to bound Hj(Bjm̄,k).
According to Lemma 5 and 10, our all-sample OLS estimators are subgaussian and independent across

instances conditioned on {A,F ¯m−1}; thus, the conditions of Proposition 6 are satisfied. Applying Proposi-

tion 6, we can write

P

[
‖β̂jk,m̄−β

j
k‖1 ≥

144λjs

p∗ζψ
+ 2C0d(3ζ + 4η) max

i∈Wk

√
σ2
i

p∗ψ|Bim,k|
log(

3

η
)

∣∣∣∣∣A,F ¯m−1

]

≤ 3d exp

(
−ρNη

2

9

)
+P

[
(Hj(Bjm̄,k))c

∣∣A,F ¯m−1

]
+P

[
λmin(Σ̂(Bjm̄,k))≤

p∗ψ

24

∣∣∣∣A,F ¯m−1

]
+
∑
i∈Wk

P
[
λmin(Σ̂(Bim,k))≤

p∗ψ

4

∣∣∣∣A,F ¯m−1

]
,

given {|Bim,k|}i∈Wk and |Bjm̄,k|. Using a concentration inequality for martingale sequence as in Lemma EC.2

in Bastani and Bayati (2020), we can prove that

P
[
Hj(Bjm̄,k)

]
≥ 1− 2d exp

(
−
λ2
j |B

j
m̄,k|

32σ2
j x

2
max

)
, (43)

with a similar proof strategy to Lemma 1. Taking expectation over F ¯m−1 on both sides, we obtain

P

[
‖β̂jk,m̄−β

j
k‖1 ≥

144λjs

p∗ζψ
+ 2C0d(3ζ + 4η) max

i∈Wk

√
σ2
i

p∗ψ|Bim,k|
log(

3

η
)

∣∣∣∣∣A
]

≤ 3d exp

(
−ρNη

2

9

)
+ 2d exp

(
−
λ2
j |B

j
m,k|

32σ2
j x

2
max

)
+P

[
λmin(Σ̂(Bjm̄,k))≤

p∗ψ

24

∣∣∣∣A]
+
∑
i∈Wk

P
[
λmin(Σ̂(Bim,k))≤

p∗ψ

4

∣∣∣∣A] ,
where we apply (43) and use |Bjm̄,k| ≥ |B

j
m,k|. Note that on the event D̄jm,k in (42), we have |Bjm,k| ≥ |B̄

j
m,k| ≥

p∗|Bjm|/2 using Lemma 10. Thus, with a union bound over
⋂
i∈Wk

D̄im,k, we have

P

[
‖β̂jk,m̄−β

j
k‖1 ≥

144λjs

p∗ζψ
+ 2C0d(3ζ + 4η) max

i∈Wk

√
2σ2

i

p2
∗ψ|Bim|

log(
3

η
)

∣∣∣∣∣A
]

≤ 3d exp

(
−ρNη

2

9

)
+ 2d exp

(
−
λ2
jp∗|Bjm|

64σ2
j x

2
max

)
+P

[
λmin(Σ̂(Bjm̄,k))≤

p∗ψ

24

∣∣∣∣A]
+
∑
i∈Wk

P
[
λmin(Σ̂(Bim,k))≤

p∗ψ

4

∣∣∣∣A]+
∑
i∈Wk

2 exp

(
−p∗|B

i
m|

10

)
(44)
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given {|Bim,k|}i∈Wk and |Bjm̄,k|, where we use Lemma 11. Similarly, we take ζ = C0−2
4C0

√
s
d

and set

η=

√
9 log(dmini∈Wk |Bim|)

ρN
, λj =

√
384σ2

j x
2
max log(d|Bjm̄|)
p∗|Bjm̄|

.

Since |Bim|= 0 for any i∈ [N ] \Wk conditioned on the event A, the value of η is equivalent to

η=

√
9 log(dmini∈[N],|Bim|>0 |Bim|)

ρN
.

Further, as log(dmini∈[N],|Bim|>0 |Bim|)≥ log(d)≥ 1, it holds that
√

log( 3
η
)≤

√
log(ρN)

2
. Then, using a union

bound over
⋂
i∈Wk

(Mi
m ∩M

j
m̄) and applying Lemma 12 and 11, we obtain from inequality (44) that

P

[
‖β̂jk,m̄−β

j
k‖1 ≥C1

√
sd log(dpj |Bm̄|/2)

pj |Bm̄|
+C2

√
sd log(ρN)

pj |Bm|
+C3d

√
log(dpj |Bm|/2) log(ρN)

Npj |Bm|

∣∣∣∣∣A
]

≤ 6

mini∈Wk pi|Bm|
+

8

pj |Bm̄|
+
∑
i∈Wk

2d exp

(
−p∗piψ|Bm|

32dx2
max

)
+
∑
i∈Wk

10 exp

(
−p∗pi|Bm|

20

)
≤ 6

mini∈Wk pi|Bm|
+

4

pj |Bm|
+
∑
i∈Wk

7d exp

(
−p∗piψ|Bm|

32dx2
max

)
,

where C1, C2, and C3 are constants listed at the beginning of §D.1, we use |Bm|/|Bm̄|= 1/2 for m≥ 1, the

first inequality uses P
[
(Mi

m)c ∪ (Mj
m̄)c
]
≤ 4 exp

(
− p∗pi|Bm|

20

)
, and the last inequality uses ψ≤ dx2

max.

Finally, to satisfy η≤ 1/2− 1/C0− ζ, we require

log(d|Bm|)≤
(
C0− 2

2C0

(
1− 1

2

√
s

d

))2
ρN

9
.

Since |Bm| ≤ T , we conclude that it suffices to have N = Ω(log(d) log(T )), combined with (41). �

Regret Analysis. Finally, we prove Proposition 7, which provides an upper bound on the cumulative

regret across all bandit instances, by bounding the regret of the three cases listed in Appendix C.

We begin by providing the following useful lemma, which shows a sufficiently large amount of data is used

to train the all-sample estimators.

Lemma 13. For any t∈Bm with m> 1, we have

|Bm−1| ≥
t

4
, |B ¯m−1| ≥

t

2
.

Proof of Lemma 13 By our design, |Bm|= 2m−1|B0| for any m≥ 1, which implies for any m> 1

|Bm−1|
t
≥ |Bm−1|∑m

i=0 |Bi|
=

1

4
,
|B ¯m−1|
t
≥
∑m−1

i=0 |Bi|∑m

i=0 |Bi|
=

1

2
. �

Next, we provide a per-period regret bound at time t for instance j in case (iii) in Appendix C.

Lemma 14. When A holds, N = Ω (log(d) log(T )) and Zt = j, the expected regret at time t∈Bm for m> 1

is upper bounded by

rjt ≤ 24x2
maxLK

(
C2

1

sd log(dpjt)

pjt
+ 2C2

2

sd log(ρN)

pjt
+ 2C2

3

d2 log(ρN) log(dpjt)

Npjt

)
+ 4bxmaxK

(
max
i∈[N]

24

pit
+

16

pjt
+ 7dN exp

(
−
p∗ψ(mini∈[N] pi)t

128dx2
max

))
.
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Proof of Lemma 14 Without loss of generality, assume arm 1 is optimal for Xt, i.e., arg maxk∈[K]X
>
t β

j
k =

1. Note that here the optimal arm is a function of Xt and hence a random variable; for simplicity, we fix

arm 1 as the optimal arm in the following. Consider the conditional expected regret at time t∈Bm

rjt (Xt) = E

[∑
k∈K

X>t (βj1−β
j
k)1

(
πj ¯m−1

(Xt) = k
) ∣∣∣∣∣Xt,Zt = j,A

]
,

where the set of arms K is defined in Algorithm 2. Since πj ¯m−1
(Xt) = k implies X>t β̂

j

k, ¯m−1
≥X>t β̂

j

1, ¯m−1
, we

have

rjt (Xt)≤E

[∑
k∈K

X>t (βj1−β
j
k)1

(
X>t β̂

j

k, ¯m−1
≥X>t β̂

j

1, ¯m−1

)∣∣∣∣∣Xt,Zt = j,A

]
. (45)

Define the event

Ljk =
{

2xmaxδ≤X>t (βj1−β
j
k)
}
.

Then, we can decompose the upper bound of the regret in (45) into two parts given Ljk, that is,

rjt (Xt)≤
∑
r=1,2

rjt,r(Xt), (46)

where

rjt,1(Xt) =E

[∑
k∈K

X>t (βj1−β
j
k)1

(
{X>t β̂

j

k, ¯m−1
≥X>t β̂

j

1, ¯m−1
}∩Ljk

)∣∣∣∣∣Xt,Zt = j,A

]
, (47)

rjt,2(Xt) =E

[∑
k∈K

X>t (βj1−β
j
k)1

(
{X>t β̂

j

k, ¯m−1
≥X>t β̂

j

1, ¯m−1
}∩ (Ljk)c

)∣∣∣∣∣Xt,Zt = j,A

]
. (48)

On one hand, the event
{
{X>t β̂

j

k, ¯m−1
≥X>t β̂

j

1, ¯m−1
}∩Ljk

}
regarding rjt,1(Xt) implies

X>t (β̂j
k, ¯m−1

−βjk)−X>t (β̂j
1, ¯m−1

−βj1)≥X>t (βj1−β
j
k)≥ 2xmaxδ.

Thus, at least one of |X>t (β̂j
ι, ¯m−1

−βjι )| with ι∈ {1, k} must be greater than xmaxδ, which means

E
[
1

(
{X>t β̂

j

k, ¯m−1
≥X>t β̂

j

1, ¯m−1
}∩Ljk

)
|Xt,Zt = j,A

]
≤
∑

ι∈{1,k}

P
[
|X>t (β̂j

ι, ¯m−1
−βjι )| ≥ xmaxδ

∣∣∣Xt,Zt = j,A
]
≤
∑

ι∈{1,k}

P
[
‖β̂j

ι, ¯m−1
−βjι ‖1 ≥ δ

∣∣∣A] .
According to Lemma EC.18 in Bastani and Bayati (2020), the set of arms K filtered by the forced-sample

estimator contains the optimal arm k = arg maxi∈[K]X
>
t β

j
i given Zt = j and no suboptimal arms in Kjsub

when A holds; thus, both arm 1 and k are not suboptimal. We further upper bound the above probability

using Proposition 12 together with Lemma 13:

P
[
‖β̂j

ι, ¯m−1
−βjι ‖1 ≥ δ

]
≤max
i∈[N]

24

pit
+

16

pjt
+ 7dN exp

(
−
p∗ψ(mini∈[N] pi)t

128dx2
max

)
,

for ι∈ {1, k}, where

δ =C1

√
2sd log(dpjt)

pjt
+C2

√
4sd log(ρN)

pjt
+C3d

√
4 log(dpjt) log(ρN)

Npjt
.
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Then, we can obtain from (47) that

E
[
rjt,1(Xt) |Zt = j,A

]
≤ 2bxmaxK

∑
ι∈{1,k}

P
[
‖β̂j

ι, ¯m−1
−βjι ‖1 ≥ δ

]
≤ 4bxmaxK

(
max
i∈[N]

24

pit
+

16

pjt
+ 7dN exp

(
−
p∗ψ(mini∈[N] pi)t

128dx2
max

))
. (49)

On the other hand, by Assumption 9, we have for the term rjt,2(Xt) that

E
[
rjt,2(Xt) |Zt = j,A

]
≤ 2xmaxδKP

[
(Ljk)c

]
≤ 4x2

maxLKδ
2. (50)

Combining (49), (50) and (46), our result follows by using the inequality 3(a2 + b2 + c2)≥ (a+ b+ c)2. �

Now we prove Proposition 7 for the total cumulative regret across the three cases in Appendix C.

Proof of Proposition 7 First, we bound the worst-case regret for case (i). By our design, we have 2q log(T )

time steps in total from B0 ∪B1. The worst-case regret per time step is 2bxmax. Thus, the cumulative regret

of case (i) is at most 2bxmax(2q log(T ) +N).

Next, we provide the worst-case regret bound for case (ii). The probability that A does not take place

is at most 8KN/T , with a union bound over all arms and bandit instances using Proposition 11. Plus, the

worst-case cumulative regret is at most 2bxmaxT throughout {Bm}m>1 when A fails. Thus, the cumulative

regret is at most 16bxmaxKN in such case.

Finally, we show the cumulative regret bound for case (iii) is upper bounded by

∑
j∈[N]

[
24x2

maxLK

(
C2

1sd log(dpjT ) + 2C2
2sd log(ρN) + 2C2

3

d2 log(ρN) log(dpjT )

N

)
log(pjT )

+4bxmaxK

(
(16 + max

i∈[N]

24pj
pi

) log(pjT ) + max
i∈[N]

896x2
maxd

2pj
p∗ψpiN

)]
.

In detail, the cumulative expected regret from all instances over {Bm}m>1 is

E

 ∑
t∈

⋃
m>1 Bm

rZtt (Xt)

∣∣∣∣∣∣A
=

∑
t∈

⋃
m>1 Bm

E
[
E
[
rZtt (Xt)

∣∣Zt,A] ∣∣A]=

T∑
t=2q log(T )+1

∑
j∈[N]

pjr
j
t . (51)

Note that we have ∫ T

2q log(T )

1

pjt
dt≤ log(pjT )

pj
.

Moreover, given our choice of q (at the beginning of §D.1), we have∫ T

2q log(T )

dN exp

(
−
p∗ψ(mini∈[N] pi)t

128dx2
max

)
dt≤ 128d2Nx2

max

p∗ψ(mini∈[N] pi)
exp

(
−
p∗ψ(mini∈[N] pi)q log(T )

64dx2
max

)
≤ 128d2Nx2

max

p∗ψ(mini∈[N] pi)T 3K log(dN)/2

≤ 128x2
maxd

2

p∗ψ(mini∈[N] pi)N
,

where the last inequality holds since T 3K log(dN)/2 ≥ N2 when T ≥ N and K,d,N > 1. The regret bound

follows by combining the above with Lemma 14.



66

Summing up the cumulative expected regrets of the three cases, we have

RT ≤ 2bxmax(2q log(T ) +N) + 16bxmaxKN

+
∑
j∈[N]

[
24x2

maxLK

(
C2

1sd log(dpjT ) + 2C2
2sd log(ρN) + 2C2

3

d2 log(ρN) log(dpjT )

N

)
log(pjT )

+4bxmaxK

(
(16 + max

i∈[N]

24pj
pi

) log(pjT ) + max
i∈[N]

896x2
maxd

2pj
p∗ψpiN

)]
.

In the standard case, pi = Θ(1/N) for any i∈ [N ] and thus q=O(Kd(sN +d) log(d) log(N)). The claim then

follows. �

Finally, we prove Theorem 3 to show the regret upper bound of any single instance in the standard regime.

Proof of Theorem 3 The proof is similar to that of Proposition 7, considering an expected time horizon

of T for instance j, i.e., a total time horizon of T/pj = Θ(NT ).

The cumulative expected regret of any instance j in case (iii) is

E

 ∑
t∈

⋃
m>1 Bm

rZtt (Xt)1 (Zt = j)

∣∣∣∣∣∣A
=

∑
t∈

⋃
m>1 Bm

pjr
j
t

≤ 24x2
maxLK

(
C2

1sd log(dT ) + 2C2
2sd log(ρN) + 2C2

3

d2 log(ρN) log(dT )

N

)
log(T )

+ 4bxmaxK

(
(16 + max

i∈[N]

24pj
pi

) log(T ) + max
i∈[N]

896x2
maxd

2pj
p∗ψpiN

)
.

Besides, the cumulative expected regret of instance j from case (i) and (ii) is simply

pj (2bxmax(2q log(T ) +N) + 16bxmaxKN) .

Combining all the above with pj = Θ(1/N) in the standard case, our result then follows. �

D.2. Data-Poor Regime

The hyperparameters are

ω0 = ζ0 + η0, ζ0 = ζ1,0 =
C0− 2

4C0

, η0 =

√
27 log(d)|B0|

qN
, η1,0 =

√
9

ρN
,

λ0 = max
i∈[N]

√
96σ2

i x
2
maxK log(d)|B0|

q
, λ1,j,0 = max

i∈[N]

√
384σ2

j x
2
max

p∗
,

and

q= max

{
2 · 3843C2

0x
4
max(max{maxi 6=j σ

2
i sd/pi, σ

2
j s

2/pj})K log(d)

(C0− 2)2h2p2
∗ψ

2
,
576C2

0x
2
max(maxi 6=j d

2σ2
i /pi)Ks

2 log(N)

h2p∗ψ
,

6 · 1922C2
0x

2
max(maxi 6=j d

2σ2
i /pi)K log(d) log(N)

h2p∗ψN
,
96x2

maxKd log(dN)

p∗ψ(mini6=j pi)
,
20K

p∗pj

}
.

Note that

λ0,j = λ0/

√
|Bj0|, ζ1,m = ζ1,0, η1,m = η1,0

√
log(d min

i 6=j,|Bim|>0
|Bim|), λ1,j,m̄ = λ1,0

√
log(d|Bjm̄|)
|Bjm̄|

as in Algorithm 2.
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The constants stated in Proposition 14 are

C4 =
962C0σjxmax

(C0− 2)p3/2
∗ ψ

, C5 =
3C0

2p∗
(max
i 6=j

√
2σ2

i d
2pj

ψpi
), C6 =

24C0

p∗
(max
i6=j

√
2σ2

i d
2pj

ψρpi
).

The proof of Theorem 4 follows closely that of Proposition 7 and Theorem 3.

Forced-Sample Estimator. First, we provide an analog of Proposition 11 in the data-poor regime. For

simplicity, we use ζ, η and λj to represent ζ0, η0 and λ0,j (described at the beginning of §D.2) respectively

in the following.

Proposition 13. When N = Ω(log(d) log(T )), the forced-sample estimator β̂jk,0 = β̂jk(B0, λ0,j , ω0) of data-

poor instance j satisfies

P
[
‖β̂jk,0−β

j
k‖1 ≥

h

4xmax

]
≤ 13

T
,

for the hyperparameter choices ζ0, η0, λ0, and q specified in Appendix D.2.

Before we prove Proposition 13, we introduce the following lemma.

Lemma 15. When |B̄j0,k| ≥ 3 log(d)/D2
1, we have

P
[
Σ̂(B̄j0,k)∈ C(Īj ,

ψ

2
)

]
≥ 1− exp

(
−D2

1|B̄
j
0,k|
)
,

P
[
Σ̂(Bj0,k)∈ C(Īj ,

p∗ψ

4
)

]
≥ 1−

(
exp

(
−
p∗D

2
1|B

j
0,k|

2

)
+ 2 exp

(
−
p∗|Bj0,k|

10

))
,

where D1 = max
{

1
2
, ζψ

768sx2
max

}
.

Proof of Lemma 15 The proof of our first result is the same as Lemma 3. The proof of the second result

is similar to that of Lemma 9, by further applying Lemma 22 and Lemma 8. �

Now we prove Proposition 13 by applying Proposition 9.

Proof of Proposition 13 The proof is analogous to that of Proposition 11. Applying Proposition 9 with

ψ̃= p∗ψ/2, we have

P

[
‖β̂jk,0−β

j
k‖1 ≥

24λjs

p∗ζψ
+ 2C0d(3ζ + 4η) max

i 6=j

√
Kσ2

i

p∗ψ|Bi0|
log(

3

η
)

]

≤ 3d exp(−Nη
2

9
) + 2d exp(−

λ2
j |B

j
0,k|

32σ2
j x

2
max

) +P
[
Σ̂(Bj0,k)∈ C(Īj ,

p∗ψ

4
)

]
+
∑
i 6=j

P
[
λmin(Σ̂(Bi0,k))≤

p∗ψ

4

]

≤ 3d exp

(
−Nη

2

9

)
+ 2d exp

(
−

λ2
j |B

j
0|

32Kσ2
j x

2
max

)
+ exp

(
−p∗D

2
1|B

j
0|

2K

)
+
∑
i6=j

d exp

(
− p∗ψ|Bi0|

16Kdx2
max

)
+
∑
i∈[N]

2 exp

(
−p∗|B

i
0|

10K

)
,

given {|Bi0|}i 6=j , where the second inequality uses Lemma 15, Lemma 9, and |Bj0,k|= |B
j
0|/K.

Correspondingly, take

ζ =
C0− 2

4C0

, η=

√
27 log(d)|B0|

qN
, λj =

√
96σ2

j x
2
maxK log(d)|B0|
q|Bj0|

.
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With a union bound over
⋂
i∈[N]Mi

0 in (36) by Lemma 8, we have

P

[
‖β̂jk,0−β

j
k‖1 ≥

768C0σjxmaxs

(C0− 2)p∗ψ

√
3K log(d)

qpj
+C0

(
3s

2
+ 24

√
3 log(d)|B0|

qN

)
max
i 6=j

√
Kd2σ2

i log(N)

2p∗ψpi|B0|

]

≤ 5

T
+ exp

(
−p∗pjD

2
1|B0|

4K

)
+
∑
i6=j

d exp

(
− p∗ψpi|B0|

32Kdx2
max

)
+
∑
i∈[N]

4 exp

(
−p∗pi|B0|

20K

)
≤ 5

T
+ 5 exp

(
−p∗pj |B0|

20K

)
+
∑
i 6=j

3d exp

(
− p∗ψpi|B0|

32Kdx2
max

)
,

where the last inequality uses D1 ≥ 1/2. Next, we choose a sufficiently large q such that

h

8xmax

≥ 768C0σjxmaxs

(C0− 2)p∗ψ

√
3K log(d)

qpj
,

h

16xmax

≥C0

3s

2
max
i 6=j

√
Kd2σ2

i log(N)

2p∗ψpi|B0|
,

h

16xmax

≥ 24C0

√
3 log(d)|B0|

qN
max
i 6=j

√
Kd2σ2

i log(N)

2p∗ψpi|B0|
,

3

T
≥
∑
i 6=j

3d exp

(
− p∗ψpi|B0|

32Kdx2
max

)
,

5

T
≥ 5 exp

(
−p∗pj |B0|

20K

)
,

and it suffices to set

q= max

{
2 · 3843C2

0x
4
max(max{maxi 6=j σ

2
i sd/pi, σ

2
j s

2/pj})K log(d)

(C0− 2)2h2p2
∗ψ

2
,
576C2

0x
2
max(maxi 6=j d

2σ2
i /pi)Ks

2 log(N)

h2p∗ψ
,

6 · 1922C2
0x

2
max(maxi 6=j d

2σ2
i /pi)K log(d) log(N)

h2p∗ψN
,
96x2

maxKd log(dN)

p∗ψ(mini6=j pi)
,
20K

p∗pj

}
.

Additionally, we also require η≤ 1/2− 1/C0− ζ according to Proposition 9, which is satisfied as long as

log(T )≤
(
C0− 2

4C0

)2
N − 1

27 log(d)
. �

All-Sample Estimator. Next, we provide a tail inequality of our all-sample estimator for the data-poor

instance. For simplicity, we use ζ, η and λj to represent ζ1,m, η1,m and λ1,j,m̄ (described at the beginning of

§D.2) respectively in the following.

Proposition 14. When the event A holds and N = Ω (log(d) log(T )), the all-sample estimator β̂jk,m̄ =

β̂jk(Bm̄, λ1,j,m̄, ω1,m) of data-poor instance j and optimal arm k ∈Kjopt satisfies

‖β̂jk,m̄−β
j
k‖1 ≤C4

√
s2 log(dpj |Bm̄|)

pj |Bm̄|
+C5

√
log(ρN)

pj |Bm|
+C6

√
log(dpj |Bm|) log(ρN)

Npj |Bm|

with probability at least 1−
(

6
mini∈Wk,i 6=j pi|Bm|

+ 4
pj |Bm|

+ 9exp
(
− p∗pj |Bm|

20

)
+
∑

i∈Wk,i6=j
5d exp

(
− p∗piψ|Bm|

32dx2
max

))
for the hyperparameter choices ζ1,0, η1,0, and λ1,0, and the constants C4, C5 and C6 specified in Appendix D.2.

Lemma 16. On the event Mj
m and Mj

m̄ in (42), when |B̄jm,k| ≥ 3 log(d)/D2
1, we have

P
[
Σ̂(Bjm̄,k)∈ C(Īj ,

p∗ψ

24
)

]
≥ 1−

(
exp

(
−D

2
1|Bjm|
2

)
+ 2 exp

(
−p∗|B

j
m|

10

))
,

where D1 = max
{

1
2
, ζψ

768sx2
max

}
.

Proof of Lemma 16 The proof follows closely that of Lemma 12, except that now we bound the event

Ẽjm,k =
{

Σ̂(B̄jm,k)∈ C(Īj , ψ2 )
}

similarly as Lemma 15. �
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Now we are ready to prove Proposition 14.

Proof of Proposition 14 The proof is similar to that of Proposition 12. We list the details that differ from

Proposition 12 as follows.

Applying Proposition 9, together with a union bound over
⋂
i∈Wk

D̄im,k in (42), we have

P

[
‖β̂jk,m̄−β

j
k‖1 ≥

144λjs

p∗ζψ
+ 2C0(3ζ + 4η) max

i∈Wk,i 6=j

√
2d2σ2

i

p2
∗ψ|Bim|

log(
3

η
)

∣∣∣∣∣A
]

≤ 3d exp

(
−ρNη

2

9

)
+ 2d exp

(
−
λ2
jp∗|Bjm|

64σ2
j x

2
max

)
+P

[
Σ̂(Bjm̄,k) 6∈ C(Īj ,

p∗ψ

24
)

∣∣∣∣A]
+

∑
i∈Wk,i 6=j

P
[
λmin(Σ̂(Bim,k))≤

p∗ψ

4

∣∣∣∣A]+
∑
i∈Wk

2 exp

(
−p∗|B

j
m|

10

)
,

given {|Bim,k|}i∈Wk and |Bjm̄,k|. Correspondingly, take

ζ =
C0− 2

4C0

, η=

√
9 log(dmini∈Wk,i 6=j |Bim|)

ρN
, λj =

√
384σ2

j x
2
max log(d|Bjm̄|)
p∗|Bjm̄|

.

Note that the value of η is equivalent to

η=

√
9 log(dmini 6=j,|Bim|>0 |Bim|)

ρN
,

since |Bim| = 0 for any i ∈ [N ] \ Wk conditioned on the event A. Similarly, using a union bound over⋂
i∈Wk

(Mi
m ∩M

j
m̄) and applying Lemma 12, 16 and 11, we get

P

[
‖β̂jk,m̄−β

j
k‖1 ≥C4

√
s2 log(dpj |Bm̄|/2)

pj |Bm̄|
+C5

√
log(ρN)

pj |Bm|
+C6

√
log(dpj |Bm|/2) log(ρN)

Npj |Bm|

∣∣∣∣∣A
]

≤ 6

mini∈Wk,i 6=j pi|Bm|
+

8

pj |Bm̄|
+exp

(
−D

2
1pj |Bm|

4

)
+

∑
i∈Wk,i 6=j

d exp

(
−p∗piψ|Bm|

32dx2
max

)
+
∑
i∈Wk

8 exp

(
−p∗pi|Bm|

20

)
≤ 6

mini∈Wk,i6=j pi|Bm|
+

4

pj |Bm|
+ 9exp

(
−p∗pj |Bm|

20

)
+

∑
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5d exp

(
−p∗piψ|Bm|

32dx2
max

)
,

where C4, C5, and C6 are constants listed at the beginning of §D.2 and we use D1 ≥ 1/2.

In addition, to satisfy η≤ 1/2− 1/C0− ζ, we require

log(d|Bm|)≤
(
C0− 2

2C0

)2
ρN

9
. �

Regret Analysis. For the regret analysis in data-poor regime, we consider the same three cases in

Appendix C.

We first provide a per-period regret bound at time t for data-poor instance j in case (iii) in Appendix C.

Lemma 17. When A holds, N = Ω (log(d) log(T )) and Zt = j for data-poor instance j, the expected regret

at time t∈Bm for m> 1 is upper bounded by

rjt ≤ 24x2
maxLK

(
C2

4

s2 log(dpjt)

pjt
+ 2C2

5

log(ρN)

pjt
+ 2C2

6

log(ρN) log(dpjt)

Npjt

)
+ 4bxmaxK

(
max
i 6=j

24

pit
+

16

pjt
+ 9 exp

(
−p∗pjt

80

)
+ 5dN exp

(
−p∗ψ(mini 6=j pi)t

128dx2
max

))
.
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Proof of Lemma 17 The proof follows closely that of Lemma 14. We list the details that differ from

Lemma 14 as follows.

Applying Proposition 14 and Lemma 13, we can write

P
[
‖β̂j

ι, ¯m−1
−βjι ‖1 ≥ δ

]
≤max

i 6=j

24

pit
+

16

pjt
+ 9 exp

(
−p∗pjt

80

)
+ 5dN exp

(
−p∗ψ(mini6=j pi)t

128dx2
max

)
,

for ι∈ {1, k}, where

δ =C4

√
2s2 log(dpjt)

pjt
+C5

√
4 log(ρN)

pjt
+C6

√
4 log(dpjt) log(ρN)

Npjt
.

Then, we can obtain

E
[
rjt,1(Xt) |Zt = j,A

]
≤ 4bxmaxK

(
max
i 6=j

24

pit
+

16

pjt
+ 9 exp

(
−p∗pjt

80

)
+ 5dN exp

(
−p∗ψ(mini 6=j pi)t

128dx2
max

))
.

The rest of the proof is the same as Lemma 14. �

Now we prove Theorem 4 to show the regret upper bound of the data-poor instance.

Proof of Theorem 4 The proof follows closely that of Theorem 3, considering an expected time horizon

of T for data-poor instance j, i.e., a total time horizon of T/pj = Θ(d2NT ).

Similarly, the cumulative expected regret of data-poor instance j in case (iii) is

E

 ∑
t∈

⋃
m>1 Bm

rZtt (Xt)1 (Zt = j)

∣∣∣∣∣∣A
=

∑
t∈

⋃
m>1 Bm

pjr
j
t

≤ 24x2
maxLK

(
C2

4s
2 log(dT ) + 2C2

5 log(ρN) + 2C2
6

log(ρN) log(dT )

N

)
log(T )

+ 4bxmaxK

((
16 + max

i 6=j

24pj
pi

)
log(T ) +

720

p∗
+ max
i∈[N]

896x2
maxd

2pj
p∗ψpiN

)
,

where we use Lemma 17. Besides, the cumulative expected regret of data-poor instance j in case (i) and (ii)

is simply

pj (4bxmaxq log(T ) + 26bxmaxKN) ,

where we use that the event A holds with at least a probability of 1− 13KN/T . Combining all the above

with pj/pj′ = Θ(1/d2) for any j′ 6= j in the data-poor regime, the claim then follows. �

D.3. Margin Condition

In this section, we discuss how our regret bound in Proposition 7 is affected by the margin condition (Assump-

tion 9). We assume a more general margin condition (Bastani et al. 2021a) as follows, and show that our

algorithm can still achieve an improvement in the context dimension.

Assumption 11 (α-Margin Condition). For any arms k and k′ of any instance j ∈ [N ], there exists a

constant L> 0 such that P
[
|X>(βjk−β

j
k′)| ≤ κ |Z = j

]
≤Lκα for any κ> 0 and for some α≥ 0.

Throughout our regret analysis in Appendix D.1, we only use the margin condition in Lemma 14. Thus,

given Assumption 11, we have the following analog of Lemma 14:
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Lemma 18. When A holds, N = Ω (log(d) log(T )), Zt = j and α 6= 1, the expected regret at time t ∈ Bm
for m> 1 is upper bounded by

rjt ≤ 24x2
maxLK

(
C1

√
sd log(dpjT ) +C2

√
2sd log(ρN) +C3

√
2d2 log(ρN) log(dpjT )

N

)α+1

(pjt)
−α+1

2

+ 4bxmaxK

(
max
i∈[N]

24

pit
+

16

pjt
+ 7dN exp

(
−
p∗ψ(mini∈[N] pi)t

128dx2
max

))
.

Proof of Lemma 18 The proof is close to that of Lemma 14. We can follow the same steps until (49).

Now instead we use Assumption 11, and the term rjt,2(Xt) has

E
[
rjt,2(Xt) |Zt = j,A

]
≤ 2xmaxδKP

[
(Ljk)c

]
≤ 4x2

maxLKδ
α+1.

The claim then follows. �

Now we are ready to state the following regret bound for all instances given our general margin condition.

Intuitively, a larger value of α imposes stronger assumptions on the contextual distribution PjX around the

boundary — i.e., it rules out distributions with high density around the boundary — and hence makes the

problem easier to learn. When α→ 0, we obtain a O(
√
T ) regret guarantee; however, when α→ 1, we recover

an optimal O(log(T )) regret as stated in Proposition 7. The proof is similar to that of Proposition 7.

Corollary 4. When N = Ω(log(d) log(T )), the total cumulative expected regret of all instances up to

time T of RMBandit satisfies

RT =

{
O
(
KN (sd+ d2/N)

α+1
2 (log(N) log(dT/N))

α+1
2 (T/N)

1−α
2

)
, where α< 1

O (KN log(T/N)) , where α> 1

for appropriate choices of hyperparameters ω0, ζ1,0, η1,0, λ0, λ1,0, and q provided in Appendix D.1.

Appendix E: Useful Lemmas

This section collects useful results from the literature.

Lemma 19. Let X =
[
X1 · · · Xn

]
be a vector of n independent σ-subgaussian random variables with mean

µ. Then, for any a∈Rn and t≥ 0, it holds that

P
[
|a>(X −µ)| ≥ t

]
≤ 2 exp

(
− t2

2σ2‖a‖22

)
.

Proof of Lemma 19 See Corollary 1.7 of Rigollet and Hütter (2015).

Lemma 20. Consider a sequence of independent random symmetric matrices Xk ∈ Rd×d, k ∈ [n] with

λmin(Xk)≥ 0 and λmax(Xk)≤L for any k. Let µ= λmin(E[
∑

k∈[n]Xk]). We have for 0< t< 1 that

P

λmin(
∑
k∈[n]

Xk)≥ tµ

≥ 1− d exp

(
− (1− t)2µ

2L

)
.

Proof of Lemma 20 See page 61 in Tropp (2015).

Lemma 21. Suppose X1, · · · ,Xn are n independent Bernoulli random variables with mean p1, · · · , pn
respectively. Let µ=

∑
i∈[n] pi. Then, we have

P

|∑
i∈[n]

Xi−µ| ≥
µ

2

≤ 2 exp
(
− µ

10

)
.
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Proof of Lemma 21 The result follows by taking ε= 1/2 in Corollary A.1.14 of Alon and Spencer (2004).

Lemma 22. For any sets B,B′ with B′ ⊆ B, it holds that λmin(Σ̂(B)) ≥ λmin(Σ̂(B′))|B′|/|B|. Besides, if

Σ̂(B′)∈ C(S,ψ), then Σ̂(B)∈ C(S, |B′|ψ/|B|).

Proof of Lemma 22 See Lemma EC.23 and EC.7 in Bastani and Bayati (2020). �

Appendix F: Experimental Details

F.1. Synthetic Experiment Details

Offline. Each instance receives an equal nj = 100 observations (consider the standard data regime). We

generate the shared parameters β† by drawing each element independently from a uniform distribution

Uniform[0,2], and normalizing them such that ‖β†‖1 = 2. We randomly draw s entries out of the d dimensions

for each bias term δj independently, and then draw the values of the s nonzero entries independently from

a uniform distribution Uniform[0,1]. Next, we draw the context vectors Xt independently from a gaussian

distribution N (0, I), truncated at −1 and 1 so that ‖Xt‖∞ = 1. We draw the noise εt independently from

a gaussian distribution N (0, σ2
j ) with σj = 0.05 for any instance j ∈ [N ]. To test the performance of our

algorithm, we leave 20% of the data of the target instance as the test set, and use a 4-fold cross validation

to tune all the hyperparameters on the rest 80%.

Online. Our total time horizon across instances T equals 15,000, 10,000 and 60,000 respectively for the

three settings in Figure 6 and the arrival probability pj = 1/N for all j ∈ [N ]; thus, each instance will receive

an expected 500, 1,000 and 4,000 observations respectively. We generate the shared parameters {β†k}k∈[K] by

drawing each element independently from a uniform distribution Uniform[0,2], and normalizing them such

that ‖β†k‖1 = 5. We randomly draw s entries out of the d dimensions for each bias term δjk independently,

and then draw the values of the s nonzero entries independently from a uniform distribution Uniform[0,1].

Next, we draw the context vectors Xt independently from a gaussian distribution N (0, I), truncated at −1

and 1 so that ‖Xt‖∞ = 1. We draw the noise εt independently from a gaussian distribution N (0, σ2
j ) with

σj = 0.05 for all instances j ∈ [N ].

To ensure fair comparison, we tune the hyperparameters of all algorithms on a pre-specified grid. Define

a hyperparameter q0 to be such that q = q0KN for q in our Algorithm 2. We take q = 1 for LASSO, OLS

Bandit and the pooling algorithm, and λ1 = λ2,0 = 0.005 for LASSO Bandit (note that the definition of q

in Bastani and Bayati (2020) is different from ours). We take α= 0.5 for GOBLin. We apply a trace-norm

regularization on the parameters for each arm k ∈ [K] respectively, and set the tuning constant in λn to be

0.005 in Trace-norm Bandit. For RMBandit, we take q0 = 0.5; additionally, we set ω0 = η1,0 = 0.2, ζ1,0 = 0.1,

and λ0 = λ1,0 = 0.005 for the first two settings (a) and (b), and ω0 = ζ1,0 = η1,0 = 0.05 and λ0 = λ1,0 = 0.01

for the third setting (c). We take h= 5 for the first two settings and h= 10 for the third setting. For the

robustness of our choices of the hyperparameters, please see additional experiments in Appendix G.

F.2. Diabetes Experiment Details

Our original dataset consists of 9,948 patients observed from 379 healthcare providers. However, many of

these providers observe very few patients, so we restrict our experiment to the N = 13 largest hospitals, of

which each has at least 150 unique patients (mean 317, median 301) observed during the sample period. We
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perform standard variable selection as a pre-processing step in order to avoid overfitting when computing our

linear oracles. In particular, we run a LASSO variable selection procedure by regressing diabetes outcomes

against the 184 total features (note that we exclude the healthcare providers that we use in our experiment in

this step to avoid overfitting), and we tune the hyperparameters using 10-fold cross-validation. This leaves us

with roughly 80 commonly predictive features (the number of selected features depends on the randomness

in the cross-validation procedure). Note that this is still a relatively large number of features compared to

the number of observations, supporting our argument that arm parameters are likely dense.

We fit a linear oracle to data from the target provider in hindsight; to avoid overfitting, we use a leave-

one-out approach, i.e., for each patient, we train the best linear model on all data from the target provider

excluding the current patient. Our oracle is constructed to provide the best achievable mean squared error

within a linear model family. For the offline setting, we leave 50% of the data as the test set, and use a

4-fold cross validation to tune the hyperparameters on the rest data. For the online setting, to ensure fair

comparison, we tune the hyperparameters of all algorithms, and we report the optimized results in Figure 7.

F.3. Pricing Experiment Details

Data. The original dataset covers 145 weeks of orders from 77 fulfillment centers across 51 cities. There

are 14 different categories (e.g., beverages, snacks) and 4 different cuisines (e.g., Indian, Italian) for meals

delivered by the company. We restrict our experiment to fulfillment centers in the three largest cities that

have more than 2 fulfillment centers. Thus, we have N = 20 centers, each processing an average (median) of

5,916 (6,118) orders during the sample period. One order arrives at each time step, and the chosen price is

the checkout price, which includes discounts, taxes and delivery charges. The order price in our data ranges

from $45 to $767; thus, we set pmin = 40 and pmax = 800. Following standard practice, we also normalize

the price so it has a similar scale as the other features. Our outcome (demand) is given by the quantity in

each order. The contexts are order-specific features including dummy variables capturing the category and

cuisine, indicators of email or homepage promotions, and an intercept. Overall, our Xt has dimension 19,

and therefore the dimensionality of the unknown parameters of the pricing model d= 38.

Algorithm. We now embed our robust multitask estimator within the ILSX/ILQX algorithmic framework

proposed in Ban and Keskin (2021) to design our RMX algorithm; similarly, we embed the Laplacian estimator

used by GOBLin (Cesa-Bianchi et al. 2013) to design the GOBX algorithm.

Let βj =

[
βj0
βj1

]
denote the unknown parameters for instance j. For our forced samples, we fix two experi-

mental prices p1 = 200 and p2 = 600, which we charge in two sets of periods

M j
i =

t
∣∣∣∣∣∣
∑
r∈[t]

1(Zr = j) =E2 + i− 1, E = 1,2, · · ·


for each experimental price i∈ [2] and each instance j ∈ [N ]. Note that M j

i is a random set in the multitask

setting, since it depends on the realization of arrivals Zt. Let M j = M j
1 ∪M

j
2 represent the forced price

experimentation period, and let M j
t = {r|r ∈M j , r < t} be the set of time periods when prices are forced at

instance j before time t. We update our RMEstimator of βj ’s at time periods

M =
{
t
∣∣ t=N(E2 + 1), E = 1,2, · · ·

}
,
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so that each instance obtains the same number of training observations in expectation as in the single-

instance setting.10 Then, the samples used for estimating the optimal price at time t are
⋃
j∈[N]M

j
γt

, where

γt = max{r | r ∈M,r < t}.

Note that we now only maintain a single set of estimated parameters for instances (compared to both

forced-sample and all-sample estimators in Algorithm 2). We denote our RMEstimator (Algorithm 1) at

instance j at time t as

β̂j(∪j∈[N]M
j
γt
, λj,t, ωt).

The first argument indicates the training data, i.e., all observations with price experimentation before time

γt (recall that the robust multitask estimators are only updated at t ∈M); the remaining arguments are

hyperparameters. We denote the estimated optimal price of user Xt at instance j at time t as

p̂j(Xt, β̂
j) =

X>t β̂
j
0

−2X>t β̂
j
1

,

which is truncated at pmin and pmax. We formalize our algorithm in Algorithm 3.

Algorithm 3 Robust Multitask Estimator with Price Experimentation (RMX)

Input parameters: Initial hyperparameters ζ0, η0, λ
Initialize {M j

i }i∈[2], and M
for t∈ [T ] do

Observe an arrival at instance j =Zt and corresponding context Xt

if t∈M j
i then

Charge price pt = pi
else

Charge price pt = p̂j(Xt, β̂
j(∪j∈[N]M

j
γt
, λj,t, ωt))

end if
Observe demand Yt =X>t β

j
0 + pt · (X>t β

j
1) + εt

if t∈M then
Update ζt = ζ0, ηt = η0

√
log(dminj∈[N],|Mj

γt
|>0 |M j

γt
|), and ωt = ζt + ηt

Update λj,t = λj,0|M j
γt
| 14
√

log(d|M j
γt
|) for each j ∈ [N ]

end if
end for

The GOBX algorithm follows exactly as in Algorithm 3, but uses the Laplacian-regularized estimator from

(Cesa-Bianchi et al. 2013) instead of our robust multitask estimator. Once again, to ensure fair comparison,

we tune the hyperparameters of all algorithms, and we report the optimized results in Figure 8.

Appendix G: Additional Experiments

G.1. Dependence on Parameters in RMEstimator

First, we study how the performance of RMEstimator scales with the parameters in our model setup. In the

following, we consider the setting (c) in Figure 4, where N = 15, d= 40, and s= 5. The model setup is the

same as the offline setting described in §F.1.

10 We initialize our algorithm with OLS until each instance has at least observed 2 orders.
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Aligned with our theory, Figure 9 shows that the prediction error decreases with the number of instances

N , increases with the sparsity level s and again decreases with the sample size ratio ni/nj for a target

instance j (ni = ni′ for i 6= i′ and i, i′ 6= j). Intuitively, when more auxiliary information is available, e.g.,

a larger number of instances or higher arrival rate in neighboring instances, our estimation or prediction

becomes more accurate and hence the prediction error declines. However, when the instances become more

heterogeneous, e.g., a higher sparsity level s, less shared information can be transferred and the problem

becomes harder to learn. We note that (c) in Figure 9 is related to the data-poor regime; in particular, the

prediction error in a data-poor instance (i.e., ni/nj� 1) is lower than the corresponding prediction error in

a standard instance (i.e., ni/nj ≈ 1) for RMEstimator, consistent with Theorem 2.
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Figure 9 Lines depict the prediction error averaged over 200 trials of a single linear instance, with error bars

the corresponding 95% confidence intervals.

In addition, we also study how RMEstimator reacts to different values of the parameters βj ’s. Figure 10 (a)

shows the prediction error versus the alignment of δj ’s. We randomly select s out of the first dc dimensions,

instead of out of all the d dimensions, to create δj ’s. Thus, for smaller value of dc, the supports of δj ’s are

more aligned. We find a non-monotonic relation between the prediction error and the value of dc. Intuitively,

RMEstimator performs better when there are fewer well-aligned components to learn together with δj in Step

2 (i.e., |Iζwell| is smaller); that takes place either when the supports of δj ’s are very aligned and |Iζwell| ≈ s

or when the supports of δj ’s are not aligned at all so each dimension is approximately poorly-aligned and

|Iζwell| ≈ 0. It is worth noting that even in the worst case, RMEstimator can still provide a reasonably good

guarantee on the prediction error, which shows the robustness of this algorithm. Figure 10 (b) compares

a pooling algorithm with RMEstimator given different magnitudes of δj ’s. More specifically, we draw the

values of the s nonzero entries of δj from a uniform distribution Uniform[0, a]. We find the pooling algorithm

outperforms RMEstimator only when the value of a is very small. Nevertheless, even in that case, our algo-

rithm still transfers most of the information and provides a competitive prediction accuracy as the pooling

algorithm. This suggests our algorithm can be useful in most of the settings empirically. Finally, we analyze

the performance of our algorithm when δj ’s are approximately sparse in Figure 10 (c). In detail, we add a

noise of Uniform[−ap, ap] on each dimension of δj . Therefore, δj ’s become less sparse when ap takes larger

values. The result is consistent with Figure 9 (b); that is, when ap is larger and there is less shared structure

across instances, the problem becomes harder and our prediction accuracy declines.
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(c) Approximate sparsity of δj ’s

Figure 10 Lines depict the prediction error averaged over 200 trials of a single linear instance, with error bars

the corresponding 95% confidence intervals.

G.2. Comparison with SCAD & MCP in RMEstimator

We now numerically explore alternative variants of the LASSO penalty, such as SCAD (Fan and Li 2001) and

MCP (Zhang 2010), in Step 2 of the RMEstimator. We consider the setting (b) in Figure 4, where N = 10,

d = 20, and s = 2. The model setup is the same as the offline setting described in §F.1. In Figure 11, we

find that the performance of RMEstimator based on SCAD or MCP is comparable or worse than that of

our RMEstimator based on LASSO, which confirms the value of efficient knowledge transfer through robust

statistics regardless of our choice of the sparse penalized algorithm.
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Figure 11 Bars depict prediction error of one task averaged over 20 trials, with corresponding 95% confidence

intervals. ‘RME’ is RMEstimator using the LASSO penalty, and ‘SCAD’ and ‘MCP’ are our RMEstimator using

the SCAD (Fan and Li 2001) and MCP (Zhang 2010) penalties respectively.

G.3. Demonstration of Sparse Heterogeneity

In Figure 2, we used a hypothesis testing procedure based on the nonparametric bootstrap from the literature

(see, e.g., §12.8.2 in Wooldridge (2010), or §3.4 in Wasserman (2006)) to illustrate that our health risk

prediction dataset supported our assumption of sparse heterogeneity. We provide additional details below.

We first compute separate linear estimators {β̂j}j∈[13] for each of the 13 hospitals, then use the trimmed

mean to estimate the shared parameter β̂† = TrimmedMean({β̂j}j∈[13], ω), and finally compute the resulting

task-specific parameters {δ̂j}j∈[13] for each hospital by subtracting the estimated shared parameter β̂† from

{β̂j}13
j=1, i.e., δ̂j = β̂j − β̂†. Note that we do not use LASSO as in our algorithm design in §3.2, i.e., this

procedure does not impose any sparse heterogeneity structure on the model parameters {βj}j∈[13].
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After we obtain the task-specific estimates {δ̂j}j∈[13] for each hospital, we run a hypothesis test on each

entry of δj directly. We use a bootstrap hypothesis test across 500 random draws of the training data to

determine whether the ith coefficient of δj (i.e., δj(i)) is statistically distinguishable from zero — that is, the

null hypothesis δj(i) = 0 is not rejected at the 5% significance level. We set coefficient i of row j (i.e., δ̂j(i)) to

zero if the null hypothesis is not rejected at a 5% significance level, and otherwise maintain the estimate δ̂j(i).

Given knowledge of the true trimmed mean hyperparameter ω, this testing procedure directly follows the

standard nonparametric bootstrap procedure from the literature (see, e.g., §12.8.2 in Wooldridge (2010), or

§3.4 in Wasserman (2006)). Particularly, for the hypothesis testing procedure, we can create a 95% pivotal

confidence interval (Wasserman 2006) for each entry of δj and check if it covers the value 0; if it covers 0,

than the null is not rejected. We find that the sparse heterogeneity pattern in Figure 2 (which takes ω= 0.1)

is robust against varying values of ω, as shown in Figure 12 below.
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Figure 12 Heatmap of nonzero coefficients given by the estimated task-specific parameters {|δj |}13
j=1 for varying

ω. We set coefficient i of row j to 0 if the null hypothesis δj(i) = 0 is not rejected at a 5% significance level.

G.4. Diabetes Risk Prediction using Logistic Regression

Recall that the diabetes risk prediction task from §6.1 is actually a classification problem with binary

outcomes. Thus, we also compare the logistic regression analog of the RMEstimator (as described in §4.5) with

the logistic regression analogs of all the baseline algorithms (i.e., group LASSO, nuclear-norm regularization,

LASSO, and regression, all estimated using maximum likelihood estimation with the logistic loss). The

experimental setup is identical to the one described in Appendix F.2. Figure 13 shows the resulting out-of-

sample predictive accuracy for the RMEstimator and other baseline algorithms. Once again, we find that the

RMEstimator achieves the best performance; yet, in this specific task, logistic regression does not perform as

well as its linear counterpart for all methods (as can be seen by comparing the scale of the y-axis in Figure 13

with that of Figure 5). We hypothesize that this may be due to the small sample sizes involved. Linear and
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logistic regression estimates are often highly correlated even when the outcomes are binary, and produce

nearly identical decisions (see, e.g., Pohlman and Leitner 2003); however, linear models are unbiased in small

samples, enabling faster convergence and improved multitask learning in the low-data regime, which may

explain our improved performance with linear classifiers. In practice, one should choose the best predictor

based on out-of-sample AUC; thus, we report results based on linear models in the main text.
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Figure 13 Bars depict out-of-sample preformance measured by AUC at one hospital (averaged over 1,000

trials), with 95% confidence intervals. Hospitals A and B have 301 and 246 unique patients respectively. All the

methods are based on logistic regression. ‘GLASSO’ refers to group LASSO, ‘Nuclear’ nuclear-norm

regularization, and ‘RME’ our robust multitask estimator.

G.5. Robustness to Hyperparameters in RMBandit

We now study the cumulative expected regret of RMBandit algorithm varying the hyperparameters specific to

our algorithm: (i) q0 ∈ {0.2,0.5,0.7,1} (the hyperparameter q0 is such that q= q0KN for q in Algorithm 2),

(ii) ω0, ζ1,0, η1,0 ∈ {0.1,0.2,0.3}. In the following, we only focus on setting (b) in Figure 6, i.e., N = 10,

K = 10, d = 20, and s = 2. The results in Figure 14 are calculated over T = 10,000 total time steps and

averaged over 20 trials. We find that the cumulative regret is not substantially affected considering varying

values of these hyperparameters; this suggests that our algorithm is robust, which is important especially in

empirical applications where these hyperparameters might not be well specified.
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(b) Varying ζ1,0
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(c) Varying η1,0
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Figure 14 Lines depict the cumulative regret averaged over 20 trials of a single linear contextual bandit, with

shaded regions the corresponding 95% confidence intervals.
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